User behaviour in data intensive applications such as the Web-based applications represents a complex set of actions influenced by plenty of factors. Thanks to this complexity, it is extremely hard for human to be able to understand all its aspects. Despite of this, by observing user actions from multiple views, we are able to extract and to model typical behaviour and its deviations on the Web. The website itself, together with transaction server logs, includes information about the site structure, content and about the actual user actions (clicks) within the site. User actions logically reflect the behaviour, while other sources indicate his/her context. Combination of these data sources allows to model the typical user behaviour and his/her preferences. The longterm behaviour describes relatively stable user preferences based on extensive user history. As the Web has become more and more dynamic, modelling user behaviour from the long-term perspective does not satisfy requirements of current Web based applications. On the other side, the short-term behaviour describes current user activity and his/her actual intent. However, this source of information is often noisy. To address these shortcomings the state-ofthe-art combines both perspectives, which allows to meaningful and timely modelling of user behaviour. In this paper, we provide a comprehensive survey
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.