Processing maps embody a supportive tool for the optimization of hot forming processes. In the present work, based on the dynamic material model, the processing maps of 10CrMo9-10 low-alloy steel were assembled with the use of two flow curve datasets. The first one was obtained on the basis of uniaxial hot compression tests in a temperature range of 1073–1523 K and a strain rate range of 0.1–100 s−1. This experimental dataset was subsequently approximated by means of an artificial neural network approach. Based on this approximation, the second dataset was calculated. An important finding was that the additional dataset contributed significantly to improving the informative ability of the assembled processing maps in terms of revealing potentially inappropriate forming conditions.
The prospects of processing blast furnace and steelmaking sludge using the Waelz process in a laboratory rotary kiln, is shown. The influence of different processing temperatures, furnace atmosphere and the type of reducing agents on the level of zinc reduction from sludges was analyzed. In general, the blast furnace sludge contains a high portion of iron (approx. 48 wt.%) and can be reused as a charge after satisfactory zinc reduction. It was found that N- atmosphere and a high content of the graphite or coke oven reducing agent in combination with high temperature can reduce the content of Zn in the sludge to 0.08 wt.% at 1200 °C for a mixture of steelmaking and blast furnace sludge. A significant reduction in the Zn content to 0.66 wt.% occurs at 1100 °C. The content and type of reducing agent plays an important role; graphite has shown a better reducing ability compared to coke oven dust. When nitrogen is used, zinc is reduced even without an additional reducing agent, since the carbon contained in the sludge is made use of for the reduction. In an air atmosphere, without the use of a reducing agent, there was no reduction in the Zn content.
The aim of this work is to compare the technological and material properties of CMnCr steels without bismuth, with 0.08 wt. % Bi and 0.12 wt. % Bi. Experimental heats showed that the most advantageous alloying of Bi into the heat was in the ladle, with an efficiency of about 20%. The optimal temperature range for forming steel was found to be 1160–1050 °C. With increasing Bi content, the formability of steels and plastic properties decreased, while the yield stress and tensile strength increased. Manganese sulfides, aluminum oxides, or oxysulfides, which were segregated both individually and in clusters, were found in the matrix of all tested steels. In steels with Bi, the Bi particles segregate the separately in the form of globules, either as envelopes of elongated MnS or Al2O3 particles segregated in rows. Sulfur dot-shaped segregations in the steel with 0.12 wt. % of Bi and the steel without Bi were essentially uniform over the whole area. For the steel with 0.08 wt. % of Bi, both dot-like and ray-ordered sulfur segregations were observed. The microstructure of all tested steels was ferritic–pearlitic with islands of bainite. Towards the center of the forged bars, variable shape and size of bainite blocks were observed. Machinability tests evaluated by the extend of tool wear showed that the most advantageous was CMnCr steel alloyed with 0.08 wt. % Bi.
The prospects of processing blast furnace and steelmaking sludge using Waelz process in a laboratory rotary kiln is shown. The influence of varying thermal treatment modes, furnace atmosphere and type of reducing agents on the level of zinc reduction from sludges was analyzed. In general, the blast furnace sludge contains a high portion of iron (approx.48 wt. %) and can be reused as a charge after satisfactory zinc reduction. It was found that N- atmosphere and high content of the graphite or coke oven reducing agent in combination with high temperature can reduce the content of Zn in the sludge to 0.08 wt. % at 1200 °C for mixture of steelmaking and blast furnace sludge. A significant reduction in the Zn content to 0.66 wt. % occurs at 1100 °C. The content and type of reducing agent play an important role; graphite has shown a better reducing ability compared to coke oven dust. When nitrogen is used, zinc is reduced even without an additional reducing agent, since the carbon contained in the sludge is made use of for the reduction. In an air atmosphere, without the use of a reducing agent, there was no reduction in the Zn content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.