Salicylic acid (SA) has a central role in defense against pathogen attack. In addition, its role in such diverse processes as germination, flowering, senescence, and thermotolerance acquisition has been documented. However, little is known about the early signaling events triggered by SA. Using Arabidopsis (Arabidopsis thaliana) suspension cells as a model, it was possible to show by in vivo metabolic phospholipid labeling with 33Pi that SA addition induced a rapid and early (in few minutes) decrease in a pool of phosphatidylinositol (PI). This decrease paralleled an increase in PI 4-phosphate and PI 4,5-bisphosphate. These changes could be inhibited by two different inhibitors of type III PI 4-kinases, phenylarsine oxide and 30 μ m wortmannin; no inhibitory effect was seen with 1 μ m wortmannin, a concentration inhibiting PI 3-kinases but not PI 4-kinases. We therefore undertook a study of the effects of wortmannin on SA-responsive transcriptomes. Using the Complete Arabidopsis Transcriptome MicroArray chip, we could identify 774 genes differentially expressed upon SA treatment. Strikingly, among these genes, the response to SA of 112 of them was inhibited by 30 μ m wortmannin, but not by 1 μ m wortmannin.
The receptor for D-myo-inositol 1,4,5-trisphosphate (InsP3-R) has been well documented in animal cells. It constitutes an important component of the intracellular calcium signalling system. Today the corresponding genes in many species have been sequenced and the antibodies against some of the InsP3-Rs are available. In contrast, very little is known about its plant counterpart. Only a few published works have dealt directly with this topic. This review summarizes the available relevant data and determines some properties of putative plant receptor(s) including the in silico search for its gene in plant genomes, in vivo evidence, its electrophysiology, the parameters of InsP3-induced calcium release and InsP3 binding, immunological cross-reactivity, and subcellular localization. Future progress in this area seems to be inevitable as, despite the efforts, its gene in plants has not been identified yet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.