Syntheses of novel semi-orthogonally protected CycloTriVeratrilene (CTV) analogues with enhanced water solubility, that is 3 and 4, derived from the previously described CTV scaffold derivative 2 are described here. These scaffolds 2-4 enabled a sequential introduction of three different complementarity determining region (CDR) mimics via Cu(i)-catalysed azide-alkyne cycloaddition towards medium-sized protein mimics denoted as "synthetic antibodies". The highly optimised sequential introduction enabled selective attachment of three different CDR mimics in a one-pot fashion. This approach of obtaining synthetic antibodies, demonstrated by the synthesis of paratope mimics of monoclonal antibody infliximab (Remicade®), provided a facile access to a range of (highly) pre-organised molecules bearing three different (cyclic) peptide segments and may find a wide range of applications in the field of protein-protein interaction disruptors as well as in the development of synthetic vaccines or lectin mimics. The prepared synthetic antibodies were tested for their affinity towards tumour necrosis factor alpha using surface plasmon resonance and synthetic antibodies with micromolar affinities were uncovered.
The synthesis of a semi-orthogonally protected CycloTriVeratrilene (CTV) scaffold derivative as well as the sequential introduction of three different peptide loops onto this molecular scaffold via Cu(I)-catalyzed azide alkyne cycloaddition towards a medium-sized protein mimic is described. This approach for the construction of medium-sized protein mimics is illustrated by the synthesis of a paratope mimic of the monoclonal antibody Infliximab (Remicade®) and provides access to a range of highly pre-organized molecular constructs bearing three different peptide segments. This approach may find wide applications for development of protein-protein interaction disruptors as well as synthetic vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.