Random mutagenesis is a powerful tool to evolve sugar transporters like Gal2 towards co-consumption of new substrates. Using a high-throughput screening system based on flow-through cytometry, various mutants were identified with improved xylose-transport characteristics. The Gal2 variants in this work are a promising starting point for further engineering to improve xylose uptake from mixed sugars in biomass.
We report the draft genome sequence of 3.3 Mb and the sequence (19.2 kb) of a natural plasmid isolated from Phenylobacterium immobile strain E (DSM 1986), able to degrade xenobiotic compounds as the sole carbon source. The sequences reveal a large number of novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs).
We present the 4.8-Mb draft genome of a soil bacterium identified as Arthrobacter sp. This Gram-positive soil bacterium is able to use the aromatic compound papaverine as sole carbon source and will be examined for novel oxygenases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.