Three series of N-(pyrazin-2-yl)benzamides were designed as retro-amide analogues of previously published N-phenylpyrazine-2-carboxamides with in vitro antimycobacterial activity. The synthesized retro-amides were evaluated for in vitro growth inhibiting activity against Mycobacterium tuberculosis H37Rv (Mtb), three non-tuberculous mycobacterial strains (M. avium, M. kansasii, M. smegmatis) and selected bacterial and fungal strains of clinical importance. Regarding activity against Mtb, most N-pyrazinylbenzamides (retro-amides) possessed lower or no activity compared to the corresponding N-phenylpyrazine-2-carboxamides with the same substitution pattern. However, the active retro-amides tended to have lower HepG2 cytotoxicity and better selectivity. Derivatives with 5-chloro substitution on the pyrazine ring were generally more active compared to their 6-cloro positional isomers or non-chlorinated analogues. The best antimycobacterial activity against Mtb was found in N-(5-chloropyrazin-2-yl)benzamides with short alkyl (2h: R2 = Me; 2i: R2 = Et) in position 4 of the benzene ring (MIC = 6.25 and 3.13 µg/mL, respectively, with SI > 10). N-(5-Chloropyrazin-2-yl)benzamides with hydroxy substitution (2b: R2 = 2-OH; 2d: R2 = 4-OH) on the benzene ring or their acetylated synthetic precursors possessed the broadest spectrum of activity, being active in all three groups of mycobacterial, bacterial and fungal strains. The substantial differences in in silico calculated properties (hydrogen-bond pattern analysis, molecular electrostatic potential, HOMO and LUMO) can justify the differences in biological activities between N-pyrazinylbenzamides and N-phenylpyrazine-2-carboxamides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.