Recently, the work environments of organizations have been in the process of transitioning into smart work environments by applying cloud computing technology in the existing work environment. The smart work environment has the characteristic of being able to access information assets inside the company from outside the company through cloud computing technology, share information without restrictions on location by using mobile terminals, and provide a work environment where work can be conducted effectively in various locations and mobile environments. Thus, in the cloud computing-based smart work environment, changes are occurring in terms of security risks, such as an increase in the leakage risk of an organization's information assets through mobile terminals which have a high risk of loss and theft and increase the hacking risk of wireless networks in mobile environments. According to these changes in security risk, the reactive digital forensic method, which investigates digital evidence after the occurrence of security incidents, appears to have a limit which has led to a rise in the necessity of proactive digital forensic approaches wherein security incidents can be addressed preemptively. Accordingly, in this research, we design a digital forensic readiness model at the level of preemptive prevention by considering changes in the cloud computing-based smart work environment. Firstly, we investigate previous research related to the cloud computing-based smart work environment and digital forensic readiness and analyze a total of 50 components of digital forensic readiness. In addition, through the analysis of the corresponding preceding research, we design seven detailed areas, namely, outside the organization environment, within the organization guideline, system information, terminal information, user information, usage information, and additional function. Then, we design a draft of the digital forensic readiness model in the cloud computing-based smart work environment by mapping the components of digital forensic readiness to each area. To verify the draft of the designed model, we create a survey targeting digital forensic field-related professionals, analyze their validity, and deduce a digital forensic readiness model of the cloud computing-based smart work environment consisting of seven detailed areas and 44 components. Finally, through an analytic hierarchy process analysis, we deduce the areas that should be emphasized compared to the existing work environment to heighten the forensic readiness in the cloud computing-based smart work environment. As a result, the weightings of the terminal information Universal Subscriber Identity Module(USIM) card, collect/gain virtual machine image, etc.), user information (user account information analysis, analysis of user's used service, etc.), and usage information (mobile OS artifact timeline analysis, action analysis through timeline, etc.) appear to be higher than those of the existing work environment. This is analyzed for each organization to preem...
Industrial technology outflow incidents negatively affect corporations, the industry, and countries. Yet, corporate information security is weak, and there is low awareness of the issue's seriousness. This study developed a rating model that can distinguish "importance" based on an objective standard. Fourteen components that can evaluate the importance of corporate information were derived from the related literature and verified for validity and reliability using factor analysis to organize final rating factors, such as Cost of Information Creation, Level of Information, Information Utilization, Effect of Internal Utilization, and Risk of External Leakage. A secondary survey targeted field experts to set the relative weights between five rating factors and give the relative weights for Effect of Internal Utilization Risk of External Leakage. A corporate information classification system was then designed to grades importance using the five factors. A final rating model of corporate information is suggested by defining security activity by level, granted by grade. This model is designed for corporate use and is expected to benefit economic security activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.