Wetland vegetation plays a key role in the ecological functions of wetland environments. Remote sensing techniques offer timely, up-to-date, and relatively accurate information for sustainable and effective management of wetland vegetation. This article provides an overview on the status of remote sensing applications in discriminating and mapping wetland vegetation, and estimating some of the biochemical and biophysical parameters of wetland vegetation. Research needs for successful applications of remote sensing in wetland vegetation mapping and the major challenges are also discussed. The review focuses on providing fundamental information relating to the spectral characteristics of wetland vegetation, discriminating wetland vegetation using broad-and narrow-bands, as well as estimating water content, biomass, and leaf area index. It can be concluded that the remote sensing of wetland vegetation has some particular challenges that require careful consideration in order to obtain successful results. These include an in-depth understanding of the factors affecting the interaction between electromagnetic radiation and wetland vegetation in a particular environment, selecting appropriate spatial and spectral resolution as well as suitable processing techniques for extracting spectral information of wetland vegetation.
The Google Earth Engine (GEE) portal provides enhanced opportunities for undertaking earth observation studies. Established towards the end of 2010, it provides access to satellite and other ancillary data, cloud computing, and algorithms for processing large amounts of data with relative ease. However, the uptake and usage of the opportunity remains varied and unclear. This study was undertaken to investigate the usage patterns of the Google Earth Engine platform and whether researchers in developing countries were making use of the opportunity. Analysis of published literature showed that a total of 300 journal papers were published between 2011 and June 2017 that used GEE in their research, spread across 158 journals. The highest number of papers were in the journal Remote Sensing, followed by Remote Sensing of Environment. There were also a number of papers in premium journals such as Nature and Science. The application areas were quite varied, ranging from forest and vegetation studies to medical fields such as malaria. Landsat was the most widely used dataset; it is the biggest component of the GEE data portal, with data from the first to the current Landsat series available for use and download. Examination of data also showed that the usage was dominated by institutions based in developed nations, with study sites mainly in developed nations. There were very few studies originating from institutions based in less developed nations and those that targeted less developed nations, particularly in the African continent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.