BackgroundAdvances in DNA sequencing have reduced the difficulty of sequencing and assembling plant genomes. A range of methods for long read sequencing and assembly have been recently compared and we now extend the earlier study and report a comparison with more recent methods.ResultsUpdated Oxford Nanopore Technology software supported improved assemblies. The use of more accurate sequences produced by repeated sequencing of the same molecule (PacBio HiFi) resulted in much less fragmented assembly of sequencing reads. The use of more data to give increased genome coverage resulted in longer contigs (higher N50) but reduced the total length of the assemblies and improved genome completeness (BUSCO). The original model species, Macadamia jansenii, a basal eudicot, was also compared with the 3 other Macadamia species and with avocado (Persea americana), a magnoliid, and jojoba (Simmondsia chinensis) a core eudicot. In these phylogenetically diverse angiosperms, increasing sequence data volumes also caused a highly linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity apparently influenced the success of assembly from these different species.ConclusionsAdvances in long read sequencing technology have continued to significantly improve the results of sequencing and assembly of plant genomes. However, results were consistently improved by greater genome coverage (using an increased number of reads) with the amount needed to achieve a particular level of assembly being species dependant.
Advances in DNA sequencing have made it easier to sequence and assemble plant genomes. Here, we extend an earlier study, and compare recent methods for long read sequencing and assembly. Updated Oxford Nanopore Technology software improved assemblies. Using more accurate sequences produced by repeated sequencing of the same molecule (Pacific Biosciences HiFi) resulted in less fragmented assembly of sequencing reads. Using data for increased genome coverage resulted in longer contigs, but reduced total assembly length and improved genome completeness. The original model species, Macadamia jansenii, was also compared with three other Macadamia species, as well as avocado (Persea americana) and jojoba (Simmondsia chinensis). In these angiosperms, increasing sequence data volumes caused a linear increase in contig size, decreased assembly length and further improved already high completeness. Differences in genome size and sequence complexity influenced the success of assembly. Advances in long read sequencing technology continue to improve plant genome sequencing and assembly. However, results were improved by greater genome coverage, with the amount needed to achieve a particular level of assembly being species dependent.
Receptor tyrosine kinases (RTK) are important cell signaling molecules that influence many cellular processes. Receptor tyrosine kinase such as orphan receptor 1 (Ror1), a surface antigen, is a member of the RTK family of Ror, which plays a crucial role in cancers that have high-grade histology. As Ror1 has been implicated to be a potential target for cancer therapy, we selected this protein for further investigation. The secondary and tertiary structure of this protein was determined, which revealed that this protein contained three β-sheets, seven α-helices, and coils. The prediction of the active site revealed its cage-like function that opens for ligand entry and then closes for interacting with the ligands. Optimized ligands from the database were virtually screened to obtain the most efficient and potent ones. The screened ligands were evaluated for their therapeutic usefulness. Furthermore, the ligands that passed the test were docked to the target protein resulting in a few ligands with high score, which were analyzed further. The highest scoring ligand, Beta-1, 2,3,4,6-Penta-O-Galloyl-D-Glucopyranose was reported to be a naturally occurring tannin. This in silico approach indicates the potential of this molecule for advancing a further step in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.