We introduce a composite deep neural network architecture for supervised and language independent context sensitive lemmatization. The proposed method considers the task as to identify the correct edit tree representing the transformation between a word-lemma pair. To find the lemma of a surface word, we exploit two successive bidirectional gated recurrent structures -the first one is used to extract the character level dependencies and the next one captures the contextual information of the given word. The key advantages of our model compared to the state-of-the-art lemmatizers such as Lemming and Morfette are -(i) it is independent of human decided features (ii) except the gold lemma, no other expensive morphological attribute is required for joint learning. We evaluate the lemmatizer on nine languages -Bengali, Catalan, Dutch, Hindi, Hungarian, Italian, Latin, Romanian and Spanish. It is found that except Bengali, the proposed method outperforms Lemming and Morfette on the other languages. To train the model on Bengali, we develop a gold lemma annotated dataset 1 (having 1, 702 sentences with a total of 20, 257 word tokens), which is an additional contribution of this work.
The task of Question Answering is at the very core of machine comprehension. In this paper, we propose a Convolutional Neural Network (CNN) model for textbased multiple choice question answering where questions are based on a particular article. Given an article and a multiple choice question, our model assigns a score to each question-option tuple and chooses the final option accordingly. We test our model on Textbook Question Answering (TQA) and SciQ dataset. Our model outperforms several LSTM-based baseline models on the two datasets.
We probe pre-trained transformer language models for bridging inference. We first investigate individual attention heads in BERT and observe that attention heads at higher layers prominently focus on bridging relations incomparison with the lower and middle layers, also, few specific attention heads concentrate consistently on bridging. More importantly, we consider language models as a whole in our second approach where bridging anaphora resolution is formulated as a masked token prediction task (Of-Cloze test). Our formulation produces optimistic results without any finetuning, which indicates that pre-trained language models substantially capture bridging inference. Our further investigation shows that the distance between anaphor-antecedent and the context provided to language models play an important role in the inference.
We probe pre-trained transformer language models for bridging inference. We first investigate individual attention heads in BERT and observe that attention heads at higher layers prominently focus on bridging relations incomparison with the lower and middle layers, also, few specific attention heads concentrate consistently on bridging. More importantly, we consider language models as a whole in our second approach where bridging anaphora resolution is formulated as a masked token prediction task (Of-Cloze test). Our formulation produces optimistic results without any finetuning, which indicates that pre-trained language models substantially capture bridging inference. Our further investigation shows that the distance between anaphor-antecedent and the context provided to language models play an important role in the inference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.