Stannous chloride catalyzed chemoselective reductive amination of a variety of carbonyl compounds with aromatic amines has been developed for the synthesis of a diverse range of tertiary amines using inexpensive polymethylhydrosiloxane as reducing agent in methanol. The present method is also applicable for the synthesis of secondary amines including heterocyclic ones.
Secondary benzylic alcohols represent a challenging class of substrates for N-alkylation of amines. Herein, we describe an iron(II)-catalyzed eco-friendly protocol for N-alkylation of secondary arylamines with secondary benzyl alcohols through a carbocationic pathway instead of the known borrowing hydrogen transfer (BHT) approach. Transiently generated carbocations, produced from alcohols via self-condensation, were coupled with arylamines to provide highly functionalized amine products. The scope of this methodology involves N-alkylation of primary, secondary and heterocyclic amines with primary/secondary benzylic, allylic and heterocyclic alcohols, which are common key structures in numerous pharmaceuticals drugs. The method can also be easily adopted for the amination of various natural products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.