The OmpF porin in the Escherichia coli outer membrane (OM) is required for the cytotoxic action of group A colicins, which are proposed to insert their translocation and active domains through OmpF pores. A crystal structure was sought of OmpF with an inserted colicin segment. A 1.6 Å OmpF structure, obtained from crystals formed in 1 M Mg2+, has one Mg2+ bound in the selectivity filter between Asp113 and Glu117 of loop 3. Co‐crystallization of OmpF with the unfolded 83 residue glycine‐rich N‐terminal segment of colicin E3 (T83) that occludes OmpF ion channels yielded a 3.0 Å structure with inserted T83, which was obtained without Mg2+ as was T83 binding to OmpF. The incremental electron density could be modelled as an extended poly‐glycine peptide of at least seven residues. It overlapped the Mg2+ binding site obtained without T83, explaining the absence of peptide binding in the presence of Mg2+. Involvement of OmpF in colicin passage through the OM was further documented by immuno‐extraction of an OM complex, the colicin translocon, consisting of colicin E3, BtuB and OmpF.
The interaction of colicins with target cells is a paradigm for protein import. To enter cells, bactericidal colicins parasitize Escherichia coli outer membrane receptors whose physiological purpose is the import of essential metabolites. Colicins E1 and E3 initially bind to the BtuB receptor, whose beta-barrel pore is occluded by an N-terminal globular "plug". The x-ray structure of a complex of BtuB with the coiled-coil BtuB-binding domain of colicin E3 did not reveal displacement of the BtuB plug that would allow passage of the colicin (Kurisu, G., S. D. Zakharov, M. V. Zhalnina, S. Bano, V. Y. Eroukova, T. I. Rokitskaya, Y. N. Antonenko, M. C. Wiener, and W. A. Cramer. 2003. Nat. Struct. Biol. 10:948-954). This correlates with the inability of BtuB to form ion channels in planar bilayers, shown in this work, suggesting that an additional outer membrane protein(s) is required for colicin import across the outer membrane. The identity and interaction properties of this OMP were analyzed in planar bilayer experiments.OmpF and TolC channels in planar bilayers were occluded by colicins E3 and E1, respectively, from the trans-side of the membrane. Occlusion was dependent upon a cis-negative transmembrane potential. A positive potential reversibly opened OmpF and TolC channels. Colicin N, which uses only OmpF for entry, occludes OmpF in planar bilayers with the same orientation constraints as colicins E1 and E3. The OmpF recognition sites of colicins E3 and N, and the TolC recognition site of colicin E1, were found to reside in the N-terminal translocation domains. These data are considered in the context of a two-receptor translocon model for colicin entry into cells.
The translocation (T) domain plays a key role in the action of diphtheria toxin and is responsible for transferring the N-terminus-attached catalytic domain across the endosomal membrane into the cytosol in response to acidification. The T-domain undergoes a series of pH-triggered conformational changes that take place in solution and on the membrane interface, and ultimately result in transbilayer insertion and N-terminus translocation. Structure-function studies along this pathway have been hindered because the protein population occupies multiple conformations at the same time. Here we report that replacement of the three C-terminal histidine residues, H322, H323, and H372, in triple-R or triple-Q mutants prevents effective translocation of the N-terminus. Introduction of these mutations in the full-length toxin results in decrease of its potency. In the context of isolated T-domain, these mutations cause loss of characteristic conductance in planar bilayers. Surprisingly, these mutations do not affect general folding in solution, protein interaction with the membranes, insertion of the consensus transmembrane helical hairpin TH8-9, or the ability of the T-domain to destabilize vesicles to cause leakage of fluorescent markers. Thus, the C-terminal histidine residues are critical for the transition from the inserted intermediate state to the open-channel state in the insertion/translocation pathway of the T-domain.
The crystal structure of the complex of the BtuB receptor and the 135-residue coiled-coil receptor-binding R-domain of colicin E3 (E3R135) suggested a novel mechanism for import of colicin proteins across the outer membrane. It was proposed that one function of the R-domain, which extends along the outer membrane surface, is to recruit an additional outer membrane protein(s) to form a translocon for passage colicin activity domain. A 3.5-Å crystal structure of the complex of E2R135 and BtuB (E2R135-BtuB) was obtained, which revealed E2R135 bound to BtuB in an oblique orientation identical to that previously found for E3R135. The only significant difference between the two structures was that the bound coiled-coil R-domain of colicin E2, compared with that of colicin E3, was extended by two and five residues at the N and C termini, respectively. There was no detectable displacement of the BtuB plug domain in either structure, implying that colicin is not imported through the outer membrane by BtuB alone. It was concluded that the oblique orientation of the R-domain of the nuclease E colicins has a function in the recruitment of another member(s) of an outer membrane translocon. Screening of porin knock-out mutants showed that either OmpF or OmpC can function in such a translocon. Arg 452 at the R/C-domain interface in colicin E2 was found have an essential role at a putative site of protease cleavage, which would liberate the C-terminal activity domain for passage through the outer membrane translocon.Protein transport across membranes in organelles and bacteria is known to involve multiprotein complexes (1, 2). Colicin import across the outer membrane of Escherichia coli has also been inferred to involve such a translocon (3-8). An experimentally useful attribute of colicin uptake for studies on protein transport across membranes is that the end result is cytotoxicity. Colicins are plasmid-encoded bactericidal proteins that are released in response to stress, enter the bacterial cell by appropriating its outer membrane nutrient-uptake machinery, and provide an advantage to colicin-resistant cells in the competition for nutrition (9). Colicins are produced in complex with a small immunity (ϳ10 kDa) protein that binds to, and prevents, the colicin from killing the producing cell (10, 11). Nuclease colicins consist of three domains: an N-terminal T (translocation)-domain that functions in the import of the colicin across the outer membrane, a C-terminal C (catalysis or channel)-domain that contains the cytotoxic activity, and a central R (receptor-binding)-domain that functions in irreversible attachment to an outer membrane receptor.Colicins have been divided into two groups, A and B, based on the intracellular protein translocation network that is utilized. "Group A" colicins utilize the Tol proteins TolA, TolB, TolQ, TolR, and Pal (4, 12, 13), whereas "Group B" colicins utilize the Ton proteins, TonB, ExbB, and ExbD (5, 14), to enter the bacterial cytoplasmic compartment and/or insert into the cytoplasmic membra...
The diphtheria toxin T-domain translocates the catalytic C-domain across the endosomal membrane in response to acidification. To elucidate the role of histidine protonation in modulating pH-dependent membrane action of the T-domain, we have used site-directed mutagenesis coupled with spectroscopic and physiological assays. Replacement of H257 with an arginine (but not with a glutamine) resulted in dramatic unfolding of the protein at neutral pH, accompanied by a substantial loss of helical structure and greatly increased exposure of the buried residues W206 and W281. This unfolding and spectral shift could be reversed by the interaction of the H257R mutant with model lipid membranes. Remarkably, this greatly unfolded mutant exhibited WT-like activity in channel formation, N-terminus translocation and cytotoxicity assays. Moreover, membrane permeabilization caused by H257R mutant occurs already at pH 6, where wild type protein is inactive. We conclude that protonation of H257 acts as a major component of the pH-dependent conformational switch, resulting in destabilization of the folded structure in solution and thereby promoting the initial membrane interactions necessary for translocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.