Purpose. This article presents a concise and comprehensive review of the technologies that are typically used for manufacturing metal powders as well as the implications that particle features have on the properties of additive manufacturing (AM) techniques. Methodology. We surveyed various experiments that have taken place on the effects of the qualities of the powder and how to guarantee the dependability and reproducibility of the parts that are manufactured as well as ways of optimizing a powders performance. We classified the methods for producing metallic powders and highlighted the benefits, limitations, and image analysis of major production techniques. Findings. The usage of different approaches to metallic powder characterization for the analysis of the physical, mechanical, and chemical processes has contributed to major steps in powder optimization. The characterization of these powders is critical for ensuring adequate additive material dimensions and specifications and recording the properties of powders used in an AM and bridging the gap of comprehension concerning the end output in AM. Originality. This paper provides a thorough analysis of the efforts made in the powder characterization of AM components for the interpretation of the impact on the part materials qualities and characteristics. Metallic powder characterization has contributed to substantial progress toward powder optimization in the analysis of particle structures. Practical value. As the application of AM technology is moving away from the creation of prototypes and toward the production of finished products, it becomes important to understand the powder properties necessary to manufacture high-quality elements consistently.
Material engineers continuously make every effort for the evolution of novel and prevailing production performances to supply our biosphere with resource-proficient, economical, and hygienic substances with superior package operation. The mitigation of energy depletion and gas releases as an utmost significance worldwide is a renowned datum; which also needs the improvement of delicate substances employing budget-proficient and ecologically pleasant methods. Consequently, copious exploration has been aimed in the study of methods retaining a potential to wrestle these widespread essentials. Material engineering processes have advanced as a feasible substitute for conventional steel fragment construction methods. CE has experienced an extraordinary advancement throughout the previous three decades. It was originally utilised uniquely as a state-of-the-art reserve of the paradigm. Referable to the expertise development which permits merging countless engineering procedures for the output of a modified portion that employed intricate configurations, CE expertise has got cumulative responsiveness. As such, this article intends to furnish a comprehensive appraisal of chemical fabrication progressions for steel substance evolution utilised in different applications. The inspection encompasses the current advancement of CE know-hows, a detailed taxonomy and classification of manufacturing operations. The focal point of the upcoming perspective of CE in substance investigation and application is further deliberated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.