A method for modular design of structural products such as automotive bodies is presented where two structural products are simultaneously decomposed to components considering the structural performances of each structure and the component sharing between two structures. The problem is posed as an optimization to minimize the reduction of structural strength due to the introduction of spot-weld joints and the number of redundant joints, while maximizing the manufacturability of the component and component sharing between two structures. As an extension to our previous work, this paper focuses on the simultaneous decomposition of two 3D beam-based structures. The major extensions include 1) a new, realistic definition of feasible joining angles based on the local geometry of joining components, 2) a component manufacturability evaluation that eliminates the need of specifying the number of components prior to decomposition and 3) a multi-objective optimization formulation that allows an effective exploration of trade-offs among different criteria. A case study on the simplified, 3D beam models of automotive bodies is presented to demonstrate the developed method.
This study presents a systematic decomposition process to carry out assembly synthesis as a tool during the conceptual design phase of a product. Two configurations obtained by structural topology optimization are decomposed automatically into assemblies consisting of multiple members with simpler geometries. Generating topology graphs for both products, the search for an optimal decomposition can then be posed as a graph partitioning problem. Considering the complexity and the corresponding computational overhead of the problem, a steady-state genetic algorithm is employed as the optimization method. The final objective function attempts to find a solution that brings about two structures with maximum structural strength, maximum assemblability, and one or more components that can be shared by both products. The software implementation is carried out and a bicycle frame design problem is solved using the procedure. It is observed that the algorithm manages to find an acceptable solution, allowing the commonality of one component in both end products and still maintaining a good structural strength and assemblability.
This paper discusses an automated method for designing modular components that can be shared within multiple structural products, such as automotive bodies for sibling vehicles. The method is an extension of the concept of decomposition-based assembly synthesis. A beam-based topology optimization method, originally developed for First Order Analysis (FOA) of the automotive body structures, is utilized in order to obtain the "base" structures subject to decomposition. It is expected that the method will facilitate the early decisions on module geometry in automotive body structures, by enhancing the capability of the FOA system. Several case studies with two-dimensional structures are reported to demonstrate the effectiveness of the proposed method. The results indicate that two structures optimized for a similar, but slightly different boundary loading conditions are successfully decomposed to contain a component that can be shared by the structures. Several Pareto optimal decompositions are presented to illustrate the trade-offs among multiple decomposition criteria, with different weights for each objective function.
An extension of decomposition-based assembly synthesis for structural modularity is presented where the early identification of shareable components within multiple structures is posed as an outcome of the minimization of estimated production costs. The manufacturing costs of components are estimated under given production volumes considering the economies of scale. Multiple structures are simultaneously decomposed and the types of welded joints at component interfaces are selected from a given library, in order to minimize the overall production cost and the reduction of structural strength due to the introduction of joints. A multiobjective genetic algorithm is utilized to allow effective examination of trade-offs between manufacturing cost and structural strength. A new joint-oriented representation of structures combined with a "direct" crossover is introduced to enhance the efficiency of the search. A case study with two aluminum space frame automotive bodies is presented to demonstrate that not all types of component sharing are economically justifiable under a certain production scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.