Since global solar radiation (GSR) is an important parameter for the design, installation, and operation of solar energy-based systems, it is important to have precise information about it. As the indicating devices are expensive and their requirements such as operation and maintenance should be carried out, the measurement of solar radiation cannot be frequently taken. On the other hand, the measurements of different meteorological parameters such as relative humidity and ground surface temperature are more prevalent in meteorology stations. Therefore, the estimation of solar radiation is a significant parameter for the areas where the measurements could not be performed and to complete the missing information in databases. Many different models, software, and simulation programs are utilized to calculate solar radiation data, provide an economic advantage, and obtain high accuracy.The main purpose of this study is to perform an estimation of solar radiation in Adana, where is on the east of the Mediterranean in Turkey, by using an artificial neural network (ANN) model. The best estimation performance is obtained by optimizing the neuron numbers used in the network's hidden layer with the trial and error method. With this aim, hourly data including wind speed, wind direction, humidity, actual pressure, and average temperature are taken as inputs while solar radiation is taken as a target. All these data, which is for 2018, has taken from the Turkish State Meteorological Service. A linear correlation coefficient value has been obtained to be about 0.87313 with the mean square error (MSE) of 5.8262x10 7 W/m 2 for the testing data set. The ANN's testing/validation results show that it has a low MSE, indicating the accuracy and adequacy of the network model. Besides, the predicted ANN output is evaluated to be remarkably close to the measured target data by considering the linear correlation coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.