In this paper, we have developed a new method called Generalized Taylor collocation method (GTCM), which is based on the Taylor collocation method, to give approximate solution of linear fractional differential equations with variable coefficients. Using the collocation points, this method transforms fractional differential equation to a matrix equation which corresponds to a system of linear algebraic equations with unknown Generalized Taylor coefficients. Generally, the method is based on computing the Generalized Taylor coefficients by means of the collocation points. This method does not require any intensive computation. Moreover, It is easy to write computer codes in any symbolic language. Hence, the proposed method can be used as effective alternative method for obtaining analytic and approximate solutions for fractional differential equations. The effectiveness of the proposed method is illustrated with some examples. The results show that the method is very effective and convenient in predicting the solutions of such problems.
Abstract-Boundary conditions in an unbounded domain, i.e. boundary condition at infinity, pose a problem in general for the numerical solution methods. The aim of this study is to overcome this difficulty by using Padé approximation with the differential transform method (DTM) on a form of classical Blasius equation. The obtained results are compared with, for the first time, the ones obtained by using a modified form of Adomian decomposition method (ADM). Furthermore, in order to see the consistency of solutions, they are also compared with the ones obtained by using variational iteration method (VIM).
In this letter, we will consider the use of the variational iteration method
and Pad\'e approximant for finding approximate solutions for a Marangoni
convection induced flow over a free surface due to an imposed temperature
gradient. The solutions are compared with the numerical (fourth-order Runge
Kutta) solutions.Comment: 6 pages, 2 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.