Earthquakes are the most destructive natural hazards throughout human history. Hundreds of thousand people lost their lives and loss of billions of dollars' properties occurred in these disasters. Occurred medium or high-intensity magnitude earthquakes in last twenty years showed that these loses continue. For reinforced concrete (R/C) buildings, inappropriate design such as soft and weak stories, strong beam-weak column, short column, hammering, unconfined gable wall and in-plane/out-of-plane movement of the walls causes damages. These are the main reasons. In addition to this, low quality of structural materials, poor workmanship, lack of engineering services, and construction with insufficient detailing of the structural elements are the another reasons of damages. Main reasons of masonry building damages in terms of design faults can be shown as heavy earthen roofs, inappropriate detailing of wall to wall connection and wall to roof connection, absence of bond beams, large openings. However, construction of buildings by using local materials with poor workmanship on the base of traditional rules is the other reason of failures for these buildings. In this book chapter, earthquakes and reasons of damages arose from earthquakes for reinforced concrete and masonry structures were presented. In addition to this, appropriate solutions are suggested.
There are three major fault zones in Turkey scattered around the country known as East Anatolian Fault (EAF), North Anatolian Fault (NAF) and Anatolian-Aegean Subduction Zone (AASZ). Last two decades, EAF has been rather quiescent compared with NAF. However, this quiescence was broken in the beginning of the millennium. The strong shaking was started in 2003 with Bingöl earthquake (Mw = 6.3) and the last earthquake on the EAF is the Sivrice-Elazığ (Mw = 6.8) on January 24, 2020. Strong seismicity of these faults damaged the structures severely and caused death of the habitants. This study aims to present, seismotectonic of the region, general characteristics of the earthquakes and more specifically to report structural damage of infill walls of the structure’s damages caused by these earthquakes. Damage evaluation and identification of the observed infill wall damages due to 2003 Bingöl, 2011 Van earthquakes and January 24, 2020 Sivrice-Elazığ earthquake occurred Turkey’s Eastern region, were presented, and possible solutions were suggested. Moreover, the effects of the infill walls on the behavior of structures under static and dynamic load cases are discussed that experienced in these earthquakes. Damages are classified according to formations such as in-plane or out-of-plane, evaluations and the results obtained from the discussions are presented for each category.
This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.