The purpose of this paper is to present a uniform finite difference method for numerical solution of a initial value problem for semilinear second order singularly perturbed delay differential equation. A numerical method is constructed for this problem which involves appropriate piecewise-uniform Shishkin mesh on each time subinterval. The method is shown to uniformly convergent with respect to the perturbation parameter. A numerical experiment illustrate in practice the result of convergence proved theoretically.
We present a new approach depending on reproducing kernel method (RKM) for timefractional Kawahara equation with variable coefficient. This approach consists of obtaining an orthonormal basis function on specific Hilbert spaces. In this regard, some special Hilbert spaces are defined. Kernel functions of these special spaces are given and basis functions are obtained. The approximate solution is attained as serial form. Convergence analysis, error estimation and stability analysis are presented after obtaining the approximate solution. To show the power and effect of the method, two examples are solved and the results are given as table and graphics. The results demonstrate that the presented method is very efficient and convenient for Kawahara equation with fractional order.Fractional concept as a branch of mathematics investigated integration and derivatives for non-integer order. As of late, this concept has become an attractive field because of its significant researches and applications such as heat conduction, diffusion wave, dynamical system, oil industries, signal processing, cellular system and other subjects. These subjects Communicated by José Tenreiro Machado.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.