Performance comparison of different pre-trained deep learning models in classifying brain MRI images.
ÖzBilgisayarlar insanlara nazaran daha hızlı işlem yapabilmektedir ancak karar verme yetenekleri kısıtlıdır. Günümüz bilgisayarlarının daha iyi analizler yapıp tahminlerde bulunabilmeleri için çeşitli makine öğrenmesi teknikleri geliştirilmektedir. Bu teknikler bilgisayarların karar verme güçlerini arttırmakta ve farklı sahalarda uzmanlara destek sistemlerin geliştirilmesine olanak sağlamaktadır. Makine öğrenmesi tekniklerinin, başarılı sınıflama ve tanılama yetenekleri ile hastalık teşhisinde medikal uzmanlara yardımcı olarak kullanımları hızla artmaktadır. Kanser teşhisinde de kullanımı hızla artan makine öğrenmesi ile başarılı çalışmalar yapılabilmektedir. Göğüs kanseri dünya genelinde en yaygın görülen ikinci kanser türü olup kadınlar arasında kanser kaynaklı en yüksek oranda ölüme sebep olan hastalıktır. Diğer tüm kanser türlerinde olduğu gibi göğüs kanserinin de erken teşhisi ölüm oranını azaltmada kritik bir öneme sahiptir. Göğüs kanseri tanısı, test sonuçların yorumlanarak teşhis edilmesi uzman insan bilgisine ihtiyaç duymaktadır ancak gelişen makine öğrenmesi teknikleri ile göğüs kanseri teşhisinde başarılı çalışmalar yürütülmektedir. Makine öğrenmesi bilgisayarların mevcut verilerden öğrenerek karmaşık ve büyük veri setleri içerisindeki desenleri hızlı bir şekilde tespit etmesini sağlayan bir yapay zekâ dalıdır. Bu yeteneğinden dolayı makine öğrenmesi kanser tanı ve teşhisinde özellikle göğüs kanseri konusunda da yaygın kullanım alanı bulmaktadır. Bu çalışmada her biri 30 adet özellik içeren ve 569 örnekten oluşan Wisconsin Üniversitesi göğüs kanseri veri seti, beş farklı makine öğrenmesi tekniği ile sınıflandırılmıştır. Veriler rastgele olarak eğitim ve test setlerine ayrılmıştır. Destek vektör makinesi, Naïve Bayes, rastgele orman, K en yakın komşu ve lojistik regresyon metotları ile gerçekleştirilen eğitim sürecinin ardından confusion matrisleri ve roc eğrileri oluşturulmuştur. Her bir tekniğin başarısı karşılaştırılmıştır. Bu karşılaştırmanın sonucunda lojistik regresyonun %98.24 doğruluk ile en başarılı yöntem olduğu ortaya konmuştur.
Ülkelerin ekonomilerine, milli varlıklarına zarar verip insanların yaşamlarına sebep olan trafik kazaları, ülkelerin en büyük sorunlarından biridir. Dolayısıyla, kazaların meydana gelmesine katkıda bulunan faktörlerin araştırılması ve doğru bir kaza şiddeti tahmin modelinin geliştirilmesi kritik öneme sahiptir. Bu çalışmada, 2011-2021 yılları arasında Teksas'ın Austin, Dallas ve San Antonio şehirlerinden toplanan trafik kazası verileri kullanılarak, kazalara sebep olan faktörler incelenip, Derin Öğrenme, Lojistik Regresyon, XGBoost, Random Forest, KNN ve SVM gibi 6 farklı makine öğrenme tekniğinin kaza şiddet-tahmin performans sonuçları karşılaştırılırdı. Elde edilen bulgular, Lojistik Regresyon algoritmasının kaza şiddetini sınıflandırmada %88 doğrulukla diğerleri arasında en iyi performansı gösterdiğini göstermektedir.
Loans are one of the main profit sources in banking system. Banks try to select reliable customers and offer them personal loans, but customers can sometimes reject bank loan offers. Prediction of this problem is an extra work for banks, but if they can predict which customers will accept personal loan offers, they can make a better profit. Therefore, at this point, the aim of this study is to predict acceptance of the bank loan offers using the Support Vector Machine (SVM) algorithm. In this context, SVM was used to predict results with four kernels of SVM, with a grid search algorithm for better prediction and cross validation for much more reliable results. Research findings show that the best results were obtained with a poly kernel as 97.2% accuracy and the lowest success rate with a sigmoid kernel as 83.3% accuracy. Some precision and recall values are lower than normal ones, like 0.108 and 0.008 due to unbalanced dataset, like for 1 true value, there are 9 negative values (9.6% true value). This study recommends the use of SVC in banking system while predicting acceptance of bank loan offers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.