Hepatit hastalığının teşhisi için çok katmanlı sinir ağı (MLNN) ve sigmoid aktivasyon fonksiyonu uygulanmıştır. Yöntemler: Yapay sinir ağları (YSA) tıbbi tanı için halen yaygın olarak kullanılan etkili araçlardır. Donanım tabanlı mimarilerde aktivasyon fonksiyonları YSA davranışında önemli rol oynamaktadır. Sigmoid fonksiyonu yumuşak tepkisi nedeniyle en sık kullanılan aktivasyon fonksiyonudur. Bu nedenle, sigmoid fonksiyonu ve yaklaşımları aktivasyon fonksiyonu olarak uygulanmıştır. Veri kümesi UCI makine öğrenme veri tabanından alınmıştır. Bulgular: Hepatit hastalığının tanısı için, MLNN yapısı hayata geçirilmiş ve Levenberg Morquardt (LM) algoritması öğrenme için kullanılmıştır. Hepatit hastalığını sınıflandıran yöntemimiz 10-kat çapraz doğrulama yoluyla 91.9%'den 93.8%'e doğruluklar sağlamıştır. Sonuç: Yapay sinir ağları ve aynı veri setini kullanarak hepatit hastalığını teşhis eden önceki çalışma ile karşılaştırıldığında, bizim sonuçlarımız sinir ağı tabanlı donanımın boyutunu ve maliyetini azaltması bakımından umut vericidir. Böylece, donanım tabanlı tanı sistemleri sigmoid fonksiyonu yaklaşımları kullanılarak etkili bir şekilde geliştirilebilir. Anahtar kelimeler: Hepatit hastalığı tanısı, çok katmanlı sinir ağı, 10-kat çapraz doğrulama, sigmoid aktivasyon fonksiyonu yaklaşımları ABSTRACT Objective: Implementation of multilayer neural network (MLNN) with sigmoid activation function for the diagnosis of hepatitis disease. Methods: Artificial neural networks (ANNs) are efficient tools currently in common use for medical diagnosis. In hardware based architectures activation functions play an important role in ANN behavior. Sigmoid function is the most frequently used activation function because of its smooth response. Thus, sigmoid function and its close approximations were implemented as activation function. The dataset is taken from the UCI machine learning database. Results: For the diagnosis of hepatitis disease, MLNN structure was implemented and Levenberg Morquardt (LM) algorithm was used for learning. Our method of classifying hepatitis disease produced an accuracy of 91.9% to 93.8% via 10 fold cross validation. Conclusion: When compared to previous work that diagnosed hepatitis disease using artificial neural networks and the identical data set, our results are promising in order to reduce the size and cost of neural network based hardware. Thus, hardware based diagnosis systems can be developed effectively by using approximations of sigmoid function.
The prediction of hospital patients and outpatients with suspected arboviral infection individuals in research-limited settings of the urban areas is defined as a challenging process for clinicians. Dengue, Chikungunya, and Zika arboviruses have gained attention in recent years because of the high prevalence in the society and financial burden of major global health systems. In this study, we proposed a machine learning algorithm based prediction model over retrospective medical records, which are named as SISA (the Severity Index for Suspected Arbovirus) and SISAL (the Severity Index for Suspected Arbovirus with Laboratory) datasets. Therefore, we aim to inform the clinicians about the use of machine learning with transfer learning success for diagnosis and comprehensive comparison of the classification performances over the SISA/SISAL datasets in the resource-limited settings that may cause to the small datasets of arboviral infection. In this study, Convolutional Neural Network and Long Short-Term Memory have achieved 100% accuracy and 1 of area under the curve (AUC) score, Fully Connected Deep Network has provided 92.86% accuracy and 0.969 AUC score in the SISAL dataset with transfer learning. Moreover, 98.73% accuracy and 0.988 AUC score were obtained by Convolutional Neural Network and Long Short-Term Memory for the SISA dataset. Furthermore, Linear Discriminant Analysis (shallow algorithm) has provided reaching up to 96.43% accuracy. Notably, deep learning based models have achieved improved performances compared to the previously reported study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.