In recent years, interest in studies of traditional medicine in Asian and African countries has gradually increased due to its potential to complement modern medicine. In this review, we provide an overview of Thai traditional medicine (TTM) current development, and ongoing research activities of TTM related to metabolomics. This review will also focus on three important elements of systems biology analysis of TTM including analytical techniques, statistical approaches and bioinformatics tools for handling and analyzing untargeted metabolomics data. The main objective of this data analysis is to gain a comprehensive understanding of the system wide effects that TTM has on individuals. Furthermore, potential applications of metabolomics and systems medicine in TTM will also be discussed.
BackgroundPain is the main symptom of most musculoskeletal disorders and can be caused by inflammation in association with oxidative stress. Thai herbal Sahatsatara formula (STF), a polyherbal formula, has been traditionally used for relieving muscle pain and limb numbness. This study aimed to investigate biologically active compounds of STF and its pharmacological effects related to antioxidant and anti-inflammatory activities.MethodsThe identification of possibly active compounds of STF was performed by high performance liquid chromatography (HPLC). Moreover, this study also assessed the free radical scavenging activities of STF and its components using DPPH radical scavenging assay and their inhibitory effects on IL-1β-induced intracellular reactive oxygen species (ROS) formation in primary human dermal fibroblasts (NHDFs) using DCFDA-flow cytometry analysis. Modulation of human gene expression by STF and its active compounds was investigated by microarray analyzed through Gene Ontology (GO) classification and pathway enrichment analysis.ResultsHPLC analysis has revealed the presence of gallic acid (GA) and piperine (PP) as the major compounds in STF extracts. Our finding discovered that STF and its active compounds (GA and PP) yielded free radical scavenging activities and abilities to inhibit IL-1β-induced cellular ROS formation in NHDFs. Furthermore, microarray analysis demonstrated that a total of 84 genes (54 upregulated and 30 downregulated) were significantly affected by IL-1β involved in inflammatory cytokines, chemokines, transcription factors, cell adhesion molecules and other immunomodulators participating in NF-κB signaling. The significantly upregulated genes in IL-1β-treated in NHDFs participate in interleukin and cholecystokinin (CCRK) signaling pathways. The GO analysis of the target genes showed that all test compounds including indomethacin, STF and its active compounds, can downregulate the genes involved in NF-кB signaling pathway in IL-1β-treated NHDFs compared to the cells treated with IL-1β alone.ConclusionsSTF and its active compounds possessing antioxidant actions can modulate the effects of IL-1β-mediated alteration of gene expression profiles associated with inflammatory signaling in NHDFs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-016-1515-0) contains supplementary material, which is available to authorized users.
Thai herbal antipyretic 22 formula (APF22), a polyherbal formula, has been traditionally used to treat dermatologic problems including hyperpigmentation. Exposure of the skin to ultraviolet A (UVA) causes abnormal melanin production induced by photooxidative stress. This study thus aimed to investigate the protective effects of APF22 extracts and phenolic compounds, ferulic acid (FA), and gallic acid (GA; used as positive control and reference compounds), on melanogenesis through modulation of nuclear factor E2-related factor 2 (Nrf2) signaling and antioxidant defenses in mouse melanoma (B16F10) cells exposed to UVA. Our results revealed that the APF22 extracts, FA, and GA reduced melanin synthesis as well as activity and protein levels of tyrosinase in UVA-irradiated B16F10 cells. Moreover, APF22 extracts and both FA and GA were able to activate Nrf2-antioxidant response element signaling and promote antioxidant defenses including glutathione, catalase, glutathione peroxidase, and the glutathione-S-transferase at both mRNA and enzyme activity levels in irradiated cells. In conclusion, APF22 extracts suppressed UVA-mediated melanogenesis in B16F10 cells possibly via redox mechanisms involving activation of Nrf2 signaling and upregulation of antioxidant defenses. Moreover, pharmacological action of the APF22 extracts may be attributed to the phenolic compounds, FA, and GA, probably serving as the APF22's active compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.