The architecture of both phenotypic variation and reproductive isolation are important problems in evolutionary genetics. The nematode genus Caenorhabditis includes both gonochoristic (male/female) and androdioecious (male/hermaprodite) species. However, the natural genetic variants distinguishing reproductive mode remain unknown, and nothing is known about the genetic basis of postzygotic isolation in the genus. Here we describe the hybrid genetics of the first Caenorhabditis species pair capable of producing fertile hybrid progeny, the gonochoristic Caenorhabditis sp. 9 and the androdioecious C. briggsae. Though many interspecies F 1 arrest during embryogenesis, a viable subset develops into fertile females and sterile males. Reciprocal parental crosses reveal asymmetry in male-specific viability, female fertility, and backcross viability. Selfing and spermatogenesis are extremely rare in XX F 1 , and almost all hybrid self-progeny are inviable. Consistent with this, F 1 females do not express male-specific molecular germline markers. We also investigated three approaches to producing hybrid hermaphrodites. A dominant mutagenesis screen for self-fertile F 1 hybrids was unsuccessful. Polyploid F 1 hybrids with increased C. briggsae genomic material did show elevated rates of selfing, but selfed progeny were mostly inviable. Finally, the use of backcrosses to render the hybrid genome partial homozygous for C. briggsae alleles did not increase the incidence of selfing or spermatogenesis relative to the F 1 generation. These hybrid animals were genotyped at 23 loci, and significant segregation distortion (biased against C. briggsae) was detected at 13 loci. This, combined with an absence of productive hybrid selfing, prevents formulation of simple hypotheses about the genetic architecture of hermaphroditism. In the near future, this hybrid system will likely be fruitful for understanding the genetics of reproductive isolation in Caenorhabditis.
Early, vigorous intrahepatic induction of interferon (IFN)-stimulated gene (ISG) induction is a feature of hepatitis C virus (HCV) infection, even though HCV inhibits the induction of type I IFNs in vitro. To identify the cytokines and cells that drive ISG induction and mediate antiviral activity during acute HCV infection, type I and III IFN responses were studied in (1) serial liver biopsies and plasma samples obtained from 6 chimpanzees throughout acute HCV infection and (2) primary human hepatocyte (PHH) cultures upon HCV infection. Type I IFNs were minimally induced at the messenger RNA (mRNA) level in the liver and were undetectable at the protein level in plasma during acute HCV infection of chimpanzees. In contrast, type III IFNs, in particular, interleukin (IL)-29 mRNA and protein, were strongly induced and these levels correlated with ISG expression and viremia. However, there was no association between intrahepatic or peripheral type III IFN levels and the outcome of acute HCV infection. Infection of PHH with HCV recapitulated strong type III and weak type I IFN responses. Supernatants from HCV-infected PHH cultures mediated antiviral activity upon transfer to HCV-replicon–containing cells. This effect was significantly reduced by neutralization of type III IFNs and less by neutralization of type I IFNs. Furthermore, IL-29 production by HCV-infected PHH occurred independently from type I IFN signaling and was not enhanced by the presence of plasmacytoid dendritic cells. Conclusion Hepatocyte-derived type III IFNs contribute to ISG induction and antiviral activity, but are not the principal determinant of the outcome of HCV infection.
The COVID-19 pandemic has disrupted traditional global point-of-care ultrasound (POCUS) education and training, as a result of travel restrictions. It has also provided an opportunity for innovation using a virtual platform. Tele-ultrasound and video-conferencing are alternative and supportive tools to augment global POCUS education and training. There is a need to support learners and experts to ensure that maximum benefit is gained from the use of these innovative modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.