Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (>80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.
Microbial electrosynthesis is a promising strategy for the microbial conversion of carbon dioxide to transportation fuels and other organic commodities, but optimization of this process is required for commercialization. Cathodes which enhance electrode-microbe electron transfer might improve rates of product formation. To evaluate this possibility, biofilms of Sporomusa ovata, which are effective in acetate electrosynthesis, were grown on a range of cathode materials and acetate production was monitored over time. Modifications of carbon cloth that resulted in a positive-charge enhanced microbial electrosynthesis. Functionalization with chitosan or cyanuric chloride increased acetate production rates 6-7 fold and modification with 3-aminopropyltriethoxysilane gave rates 3-fold higher than untreated controls. A 3-fold increase in electrosynthesis over untreated carbon cloth cathodes was also achieved with polyaniline cathodes. However, not all strategies to provide positively charged surfaces were successful, as treatment of carbon cloth with melamine or ammonia gas did not stimulate acetate electrosynthesis. Treating carbon cloth with metal, in particular gold, palladium, or nickel nanoparticles, also promoted electrosynthesis, yielding electrosynthesis rates that were 6-, 4.7-or 4.5-fold faster than the untreated control, respectively. Cathodes comprised of cotton or polyester fabric treated with carbon nanotubes yielded cathodes that supported acetate electrosynthesis rates that were $3-fold higher than carbon cloth controls. Recovery of electrons consumed in acetate was $80% for all materials. The results demonstrate that one approach to increase rates of carbon dioxide reduction in microbial electrosynthesis is to modify cathode surfaces to improve microbe-electrode interactions. Broader contextMicrobial electrosynthesis is a recently conceived bioenergy strategy in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to organic products that are excreted from the cells. Any form of electrical energy can power microbial electrosynthesis, but when electricity is obtained from solar technologies and water is the source of electrons, microbial electrosynthesis is an articial form of photosynthesis with many potential advantages over biomassbased energy strategies. This study demonstrates that there are several strategies for modifying cathode surface properties that can enhance rates of microbial electrosynthesis.
Engineered stimulation of Fe(III) has been proposed as a strategy to enhance the immobilization of radioactive and toxic metals in metal-contaminated subsurface environments. Therefore, laboratory and field studies were conducted to determine which microbial populations would respond to stimulation of Fe(III) reduction in the sediments of sandy aquifers. In laboratory studies, the addition of either various organic electron donors or electron shuttle compounds stimulated Fe(III) reduction and resulted in Geobacter sequences becoming important constituents of the Bacterial 16S rDNA sequences that could be detected with PCR amplification and denaturing gradient gel electrophoresis (DGGE). Quantification of Geobacteraceae sequences with a PCR most-probable-number technique indicated that the extent to which numbers of Geobacter increased was related to the degree of stimulation of Fe(III) reduction. Geothrix species were also enriched in some instances, but were orders of magnitude less numerous than Geobacter species. Shewanella species were not detected, even when organic compounds known to be electron donors for Shewanella species were used to stimulate Fe(III) reduction in the sediments. Geobacter species were also enriched in two field experiments in which Fe(III) reduction was stimulated with the addition of benzoate or aromatic hydrocarbons. The apparent growth of Geobacter species concurrent with increased Fe(III) reduction suggests that Geobacter species were responsible for much of the Fe(III) reduction in all of the stimulation approaches evaluated in three geographically distinct aquifers. Therefore, strategies for subsurface remediation that involve enhancing the activity of indigenous Fe(III)-reducing populations in aquifers should consider the physiological properties of Geobacter species in their treatment design.
Studies on the mechanisms for extracellular electron transfer in Geobacter species have primarily focused on Geobacter sulfurreducens, but the poor conservation of genes for some electron transfer components within the Geobacter genus suggests that there may be a diversity of extracellular electron transport strategies among Geobacter species. Examination of the gene sequences for PilA, the type IV pilus monomer, in Geobacter species revealed that the PilA sequence of Geobacter uraniireducens was much longer than that of G. sulfurreducens. This is of interest because it has been proposed that the relatively short PilA sequence of G. sulfurreducens is an important feature conferring conductivity to G. sulfurreducens pili. In order to investigate the properties of the G. uraniireducens pili in more detail, a strain of G. sulfurreducens that expressed pili comprised the PilA of G. uraniireducens was constructed. This strain, designated strain GUP, produced abundant pili, but generated low current densities and reduced Fe(III) very poorly. At pH 7, the conductivity of the G. uraniireducens pili was 3 × 10-4 S/cm, much lower than the previously reported 5 × 10-2 S/cm conductivity of G. sulfurreducens pili at the same pH. Consideration of the likely voltage difference across pili during Fe(III) oxide reduction suggested that G. sulfurreducens pili can readily accommodate maximum reported rates of respiration, but that G. uraniireducens pili are not sufficiently conductive to be an effective mediator of long-range electron transfer. In contrast to G. sulfurreducens and G. metallireducens, which require direct contact with Fe(III) oxides in order to reduce them, G. uraniireducens reduced Fe(III) oxides occluded within microporous beads, demonstrating that G. uraniireducens produces a soluble electron shuttle to facilitate Fe(III) oxide reduction. The results demonstrate that Geobacter species may differ substantially in their mechanisms for long-range electron transport and that it is important to have information beyond a phylogenetic affiliation in order to make conclusions about the mechanisms by which Geobacter species are transferring electrons to extracellular electron acceptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.