The present study was aimed at reducing the time and labour used to perform DNA-DNA hybridizations for classification of bacteria at the species level. A micro-well-format DNA hybridization method was developed and validated. DNA extractions were performed by a small-scale method and DNA was sheared mechanically into fragments of between 400 and 700 bases. The hybridization conditions were calibrated according to DNA similarities obtained by the spectrophotometric method using strains within the family Pasteurellaceae. Optimal conditions were obtained with 300 ng DNA added per well and bound by covalent attachment to NucleoLink. Hybridization was performed with 500 ng DNA, 5 % (w/w) of which was labelled with photoactivatable biotin (competitive hybridization) for 25 h at 65 SC in 2iSSC followed by stringent washing with 2iSSC at the same temperature. The criteria for acceptance of results were a maximum of 15 % standard deviation, calculated as a percentage of the mean for four replicate micro-wells, and that DNA similarities were not significantly different in at least two independent experiments. The relationship between DNA similarities obtained by the microwell method (y) and by the spectrophotometric method (x) was y l 0534xM306, when these criteria had been applied to 23 pairs of strains of Actinobacillus species, avian [Pasteurella] haemolytica-like bacteria and Mannheimia species. The correlation (Pearson) between DNA similarities obtained by interchange of strains used for covalent binding and hybridization was 0794. Significantly lower DNA similarities were observed by the spectrophotometric compared with the micro-well method for three pairs of hybridizations. After removal of these data, the relationship between DNA similarities obtained by the micro-well and spectrophotometric methods improved to y l 0855xM110. It was found that the accuracy and precision of the micro-well method was at the same level as that of the spectrophotometric method, but the labour and analysis time were reduced significantly. The use of hybridization in the micro-well format will allow DNA-DNA hybridizations to be carried out between all strains selected for a particular taxonomic study, in order to construct complete data matrices and improve species definition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.