Distribusi Frekuensi berkelompok adalah penyusunan urutan data tunggal ke dalam tabel kelas-kelas interval, untuk kemudian ditentukan frekuensinya. Penyusunan ini berguna untuk menyelidiki kumpulan data sehingga dapat membawa informasi dengan cara yang pintas. Metode Sturges adalah aturan yang paling dikenal untuk menentukan jumlah kelas interval dalam distribusi frekuensi, namun terdapat kelemahan di dalamnya sehingga pada penelitian ini dilakukan analisis perbandingan keakuratan model tabulasi antara Metode Sturges dengan Metode Scott yang merupakan aturan untuk menentukan panjang kelas dalam distribusi frekuensi. Perbandingan dilihat dari hasil perhitungan selisih ukuran pemusatan, ukuran lokasi, serta dispersiantara kedua model terhadap ukuran dari data simulasinya (data aktual), kemudian dianalisis perbandingannya melalui jenis distribusi data, yang dalam penelitian ini menggunakan data berdistribusi normal dan eksponensial. Hasil perbandingan keakuratan dari masing- masing tabel distribusi frekuensi dari data normal maupun data eksponensial, menunjukkan persentasi keakuratan dari tabel distribusi frekuensi dengan metode scott lebih tinggi dibandingkan dengan metode sturges, hal ini dikarenakan, pada tabel distribusi frekuensi dengan metode sturges, terdapat data yang tidak masuk ke dalam tabel distribusi frekuensi diakibatkan nilai panjang kelas interval tidak dapat mencakup pengelompokkan sampai data tertinggi. Group Frequency Distribution is the arrangement of a single data sequence into a table of interval classes, for which frequency is then determined. This arrangement is useful for investigating data sets so that they can carry information in a shortcut way. The Sturges method is the best known rule for determining the number of interval classes in frequency distribution; however, there are weaknesses in it. In this study, a comparative analysis of the tabulation model between the Sturges Method and the Scott Method, which is a rule for determining class length in frequency distribution, was conducted. Comparison was seen from the calculation of the difference in concentration size, location size, and dispersion between the two models to the size of the simulation data (actual data). Then the comparison through the type of data distribution was analyzed, which this study used normal and exponential distribution data. The results of the comparison of the accuracy of each frequency distribution table from normal and exponential data showed that the percentage accuracy of the frequency distribution table with the Scott method was higher than the Sturges method. It occurred because in the frequency distribution table with the Sturges method, there were some data not included in the frequency distribution table. It was caused by the value of the interval class length that could not comprise the highest grouping of data.
Metode Exponential Smoothing Holt-Winters merupakan metode peramalan yang memiliki tiga parameter, yaitu α,β, dan γ. Metode Exponential Smoothing Holt-Winters digunakan ketika data menunjukkan adanya trend dan musiman. Metode Exponential Smoothing Holt-Winters terbagi menjadi dua yaitu model Exponential Smoothing Holt-Winters Multiplikatif dan model Exponential Smoothing Holt-Winters Aditif. Tujuan dari penulisan skripsi ini adalah mendapatkan nilai parameter optimal pada Exponential Smoothing Holt-Winters menggunakan metode optimasi nonlinear, yaitu metode Golden Section dan metode Pencarian Dikotomi. Pada penelitian ini, Proses perhitungan untuk mendapatkan parameter optimal dibantu dengan software Matlab R2009a. Proses dengan menggunakan Metode Golden Section membutuhkan 17 iterasi, yang mana pada model Holt-Winters Multiplikatif diperoleh parameter α=0.223085, parameter β=0.000173, parameter γ=0.617861 dan nilai MAPE optimal =12.158570%, untuk model Holt-Winters Aditif diperoleh parameter α=0.199534, parameter β=0.000173, parameter γ=0.471963 dan nilai MAPE optimal =12.242973%. Sedangkan metode Pencarian Dikotomi membutuhkan 12 iterasi, yang mana pada model Holt-Winters Multiplikatif diperoleh parameter α=0.250506, parameter β=0.000244, parameter γ=0.562694 dan nilai MAPE optimal =12.181562%, untuk model Holt-Winters Aditif diperoleh parameter α=0.199776, parameter β=0.547084, parameter γ=0.547538 dan nilai MAPE optimal =12.203543%.
This study was conducted to analyze the value of risk in trading Gold Trading Futures using Fundamental Analysis, Technical Analysis and Value at Risk. Fundamental analysis that uses Wage Income data other than the Agriculture Sector (Non-Farm Payroll), the conditions of the United States economy, and demand for gold prices in the world. Technical Analysis uses Moving Average Convergence / Divergence, Relative Vigor Index, and Pivot Points. Value at Risk is based on normal errors and skewness / kurtosis. The results of the analysis shown are the MACD Indicator has a truth level of 146 out of 226 days of analysis or 64.602%, the RVI Indicator has a truth level of 220 days from 226 days of analysis or 97.345%, Fundamental Analysis has a truth level of 23 out of 23 Excited for a year or 100%. Based on the level of confidence = 95%, it can be concluded that the price of gold with the normal approach (\Psi_{normal}) = 1211.1984 and the price of gold with the skewness and kurtosis approach (\Psi_{SK}) = 1247.34072.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.