Freshwater snails of the genus Bulinus O. F. Müller, 1781 are intermediate hosts for schistosomes, trematode parasites which cause schistosomiasis. The genus includes closely related species complexes with restricted gene flow between populations of each taxon. Despite their importance as intermediate hosts, unambiguous identification of these snails remains challenging. We applied molecular approach to their identification to achieve a better understanding of the epidemiology of schistosomiasis in an endemic region, south-western Nigeria. A total of 149 snails were collected and their genomic DNA was screened for schistosome infection using PCR amplification of schistosome DraI repeat sequence. The snails were identified by PCR-RFLP and/or sequencing of an amplicon of their entire ITS region including the 5.8S ribosomal RNA (rRNA) gene. Four Bulinus species, namely B. globosus (Morelet, 1866), B. forskalii (Ehrenberg, 1831), B. camerunensis Mandahl-Barth, 1957 and B. senegalensis O. F. Müller, 1781 were identified, and 34.9% (n = 52) of the 149 snails were infected: B. globosus 25.5% (n = 38), B. forskalii 5.4% (n = 8), B. camerunensis 2.7% (n = 4) and B. senegalensis 1.3% (n = 2). Restriction fragment profiles of the ribosomal ITS region for B. globosus closely matched those obtained in our previous study thus confirming the view that ribosomal ITS region of these snails could be well suited for taxonomic studies. The use of sequencing for species identification was costly and time-consuming, but it was effective in resolving true identities of snails whose restriction profiles were similar and inconclusive.
The management of ecosystem has been a major contributor to the control of diseases that are transmitted by snail intermediate hosts. The ability of freshwater snails to self-fertilize, giving rise to thousands of hatchlings, enables them to contribute immensely to the difficulty in reducing the endemicity of some infections in the world. One of the effects of land use/land cover change (LU/LCC) is deforestation, which, in turn, leads to the creation of suitable habitats for the survival of freshwater snails. This study was aimed at studying the land use/land cover change, physico-chemical parameters of water bodies and to understand the interplay between them and freshwater snails in an environment where a new industrial plant was established. Landsat TM, 1984, Landsat ETM+ 2000 and Operational land Imager (OLI) 2014 imageries of the study area were digitally processed using ERDAS Imagine. The land use classification includes settlement, water bodies, wetlands, vegetation and exposed surface. Dissolved oxygen, water temperature, pH, total dissolved solids and conductivity were measured with multipurpose digital meters. Snail sampling was done at each site for 30 minutes along the littoral zones, using a long-handled scoop (0.2mm mesh size) net once every month for 24 months. Independent t-test was used to determine the variation between seasons, Spearman’s rank correlation coefficient was used to test the relationship between physico-chemical parameters and snail species while regression was used to analyze the relationship between LU/LCC and freshwater snails. Species’ richness, diversity and evenness were examined using Margalef, Shannon Weiner and Equitability indexes. Snail species recovered include: Bulinus globosus, Bulinus jousseaumei, Bulinus camerunensis, Bulinus senegalensis, Bulinus forskalii, Amerianna carinatus, Ferrissia spp., Segmentorbis augustus, Lymnaea natalensis, Melanoides tuberculata, Physa acuta, Gyraulus costulatus, Indoplanorbis exuxtus and Gibbiella species. Out of the total snails recovered, M. tuberculata (2907) was the most abundant, followed by Lymnaea natalensis (1542). The highest number of snail species was recovered from Iho River while the least number of snails was recovered from Euro River. The mean and standard deviation of physico-chemical parameters of the water bodies were DO (2.13±0.9 mg/L), pH (6.80±0.4), TDS (50.58±18.8 mg/L), Temperature (26.2±0.9°C) and Conductivity (74.00±27.5 μS/cm). There was significant positive correlation between pH and B. globosus (r = 0.439; P<0.05). Dissolved oxygen showed significant positive correlation with B. globosus (r = 0.454; P<0.05) and M. tuberculata (r = 0.687; P<0.01). There was a positive significant relationship between LULCC and B. camerunensis (p<0.05). The positive relationship between LULCC and the abundance of B. globosus, B. jousseaumei was not significant. The area covered by water bodies increased from 3.72 to 4.51 kilometers; this indicates that, more suitable habitats were being created for the multiplication of freshwater snails. We therefore conclude that, increase in areas suitable for the survival of freshwater snails could lead to an increase in water-borne diseases caused by the availability of snail intermediate hosts.
One major risk factor common to individuals in schistosomiasis endemic areas is water contact patterns. Effort to determine the dynamics in water contact patterns in different regions needs utmost attention in order to suggest better control strategy for schistosome infection. Quantitative observations on human water contact activities were recorded in Yewa North Local Government Area of Ogun State for a period of two years. Frequency and duration of observed water contact activities were recorded. Males had the highest water contact during the rainy season with 51.1% compared to females with 48.9%. Females had the highest water contact with 51.0% while males had 49.0% during the dry season. The age group 10–19 years had the highest water contact with 27.1%, this was followed by 20–29 year and 30–39 year age groups with 23.6% and 22.1%, respectively, during the rainy season. Our results showed that water contact activities differ with respect to different communities, sex and age groups. Previous high prevalence of schistosome infection in the study areas could be attributed to high water contact activities. Therefore, provision of adequate pipe-borne water, good sanitation and improved knowledge on schistosome life cycle among the community members will reduce the high rate of human water contacts.
Bulinid snails act as intermediate host of schistosomes and the presence of the snail gives schistosomiasis an expansive characteristics. Schistosomiasis is of medical and veterinary importance in the tropical and subtropical regions. The shell shape and structure of radula teeth of bulinids are often specific to a species or genus, and are widely used for gastropod species identification. Bulinid species collected from schistosome endemic areas of Ogun State, South-western Nigeria were used for this study. Shell morphometrics were recorded using vernier caliper while the buccal mass of each snail was removed and permanent slides of the radulae were made according to standard procedure. There was a significant difference in the shell height, width, aperture height and aperture width between Bulinus globosus and Bulinus jousseaumei (p<0.05). The average shell height measurement for B. globosus was 7.6±1.9 mm, while B. jousseaumei measured 5.1±1.6 mm. Each transverse row of B. globosus radula had a ratio of 26:8:1:8:26 while B. jousseaumei had a ratio of 25:8:1:8:25. The marginal teeth of B. globosus possessed five cusps while B. jousseaumei possessed six cusps. The differences observed in shell, radula ratio and cusps in both species could be used to differentiate both species.
Lymnaea natalensis is the only snail intermediate host of Fasciola gigantica, the causative agent of fascioliasis, in Nigeria. The species also serves as intermediate host for many other African trematode species of medical and veterinary importance, and it is found throughout the country. However, there is no detailed information on the factors that influence its distribution and seasonal abundance in the tropical aquatic habitats in Nigeria. This study used the geographic information system and remotely sensed data to develop models for predicting the distribution of L. natalensis in South-Western Nigeria. Both land surface temperature (LST) and normalised difference vegetation index (NDVI) were extracted from Landsat satellite imagery; other variables (slope and elevation) were extracted from a digital elevation model (DEM) while rainfall data were retrieved from the European Meteorology Research Programme (EMRP). These environmental variables were integrated into a geographic information system (GIS) to predict suitable habitats of L. natalensis using exploratory regression. A total of 1410 L. natalensis snails were collected vis-à-vis 22 sampling sites. Built-up areas recorded more L. natalensis compared with farmlands. There was no significant difference in the abundance of snails with season (p 0.05). The regression models showed that rainfall, NDVI, and slope were predictors of L. natalensis distribution. The habitats suitable for L. natalensis were central areas, while areas to the north and south were not suitable for L. natalensis.Contribution: The predictive risk models of L. natalensis in the study will be useful in mapping other areas where the snail sampling could not be conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.