Let \(G\) be a simple and finite graph. A graph is said to be decomposed into subgraphs \(H_1\) and \(H_2\) which is denoted by \(G= H_1 \oplus H_2\), if \(G\) is the edge disjoint union of \(H_1\) and \(H_2\). If \(G= H_1 \oplus H_2 \oplus \cdots \oplus H_k\), where \(H_1\), \(H_2\), ..., \(H_k\) are all isomorphic to \(H\), then \(G\) is said to be \(H\)-decomposable. Furthermore, if \(H\) is a cycle of length \(m\) then we say that \(G\) is \(C_m\)-decomposable and this can be written as \(C_m|G\). Where \( G\times H\) denotes the tensor product of graphs \(G\) and \(H\), in this paper, we prove that the necessary conditions for the existence of \(C_6\)-decomposition of \(K_m \times K_n\) are sufficient. Using these conditions it can be shown that every even regular complete multipartite graph \(G\) is \(C_6\)-decomposable if the number of edges of \(G\) is divisible by \(6\).
An outer-connected vertex edge dominating set (OCVEDS) for an arbitrary graph G is a set D ⊂ V(G) such that D is a vertex edge dominating set and the graph G \ D is connected. The outer-connected vertex edge domination number of G is the cardinality of a minimum OCVEDS of G, denoted by γ oc ve (G). In this paper, we give the outer-connected vertex edge dominating set in lexicographic product of graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.