GDP-mannose 3,5-epimerase (GM35E) catalyzes the conversion of GDP-mannose towards GDP-l-galactose and GDP-l-gulose. Although this reaction represents one of the few enzymatic routes towards the production of l-sugars and derivatives, it has not yet been exploited for that purpose. One of the reasons is that so far only GM35Es from plants have been characterized, yielding biocatalysts that are relatively unstable and difficult to express heterologously. Through the mining of sequence databases, we succeeded in identifying a promising bacterial homologue. The gene from the thermophilic organism Methylacidiphilum fumariolicum was codon optimized for expression in Escherichia coli, resulting in the production of 40 mg/L of recombinant protein. The enzyme was found to act as a self-sufficient GM35E, performing three chemical reactions in the same active site. Furthermore, the biocatalyst was highly stable at temperatures up to 55 °C, making it well suited for the synthesis of new carbohydrate products with application in the pharma industry.
GDP-mannose 3,5-epimerase (GM35E, GME) belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily and catalyses the conversion of GDP-d-mannose towards GDP-l-galactose. Although the overall reaction seems relatively simple (a double epimerization), the enzyme needs to orchestrate a complex set of chemical reactions, with no less than 6 catalysis steps (oxidation, 2x deprotonation, 2x protonation and reduction), to perform the double epimerization of GDP-mannose to GDP-l-galactose. The enzyme is involved in the biosynthesis of vitamin C in plants and lipopolysaccharide synthesis in bacteria. In this review, we provide a clear overview of these interesting epimerases, including the latest findings such as the recently characterized bacterial and thermostable GM35E representative and its mechanism revision but also focus on their industrial potential in rare sugar synthesis and glycorandomization.
C5-epimerases are promising tools for the production of rare l-hexoses from their more common d-counterparts. On that account, UDP-glucuronate 5-epimerase (UGA5E) attracts attention as this enzyme could prove to be useful for the synthesis of UDP-l-iduronate. Interestingly, l-iduronate is known as a precursor for the production of heparin, an effective anticoagulant. To date, the UGA5E specificity has only been detected in rabbit skin extract, and the respective enzyme has not been characterized in detail or even identified at the molecular level. Accordingly, the current work aimed to shed more light on the properties of UGA5E. Therefore, the pool of putative UGA5Es present in the UniProt database was scrutinized and their sequences were clustered in a phylogenetic tree. However, the examination of two of these enzymes revealed that they actually epimerize UDP-glucuronate at the 4- rather than 5-position. Furthermore, in silico analysis indicated that this should be the case for all sequences that are currently annotated as UGA5E and, hence, that such activity has not yet been discovered in nature. The detected l-iduronate synthesis in rabbit skin extract can probably be assigned to the enzyme chondroitin-glucuronate C5-epimerase, which catalyzes the conversion of d-glucuronate to l-iduronate on a polysaccharide level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.