Introduction Survivors of viral ARDS are at risk of long-term physical, functional and neuropsychological complications resulting from the lung injury itself, but also from potential multiorgan dysfunction, and the long stay in the intensive care unit (ICU). Recovery profiles after severe SARS-CoV-2 pneumonia in intensive care unit survivors have yet to be clearly defined. Material and methods The goal of this single-center, prospective, observational study was to systematically evaluate pulmonary and extrapulmonary function at 12 months after a stay in the ICU, in a prospectively identified cohort of patients who survived SARS-CoV-2 pneumonia. Eligible patients were assessed at 3, 6 and 12 months after onset of SARS-CoV-2. Patients underwent physical examination, pulmonary function testing, chest computed tomography (CT) scan, a standardized six-minute walk test with continuous oximetry, overnight home respiratory polygraphy and have completed quality of life questionnaire. The primary endpoint was alteration of the alveolar–capillary barrier compared to reference values as measured by DLCO, at 12 months after onset of SARS-CoV-2 symptoms. Results In total, 85 patients (median age 68.4 years, (interquartile range [IQR] = 60.1–72.9 years), 78.8% male) participated in the trial. The median length of hospital stay was 44 days (IQR: 20–60) including 17 days in ICU (IQR: 11–26). Pulmonary function tests were completed at 3 months (n = 85), 6 months (n = 80), and 12 months (n = 73) after onset of symptoms. Most patients showed an improvement in DLCO at each timepoint (3, 6, and 12 months). All patients who normalized their DLCO did not subsequently deteriorate, except one. Chest CT scans were abnormal in 77 patients (96.3%) at 3 months and although the proportion was the same at 12 months, but patterns have changed. Conclusion We report the results of a comprehensive evaluation of 85 patients admitted to the ICU for SARS-CoV-2, at one-year follow-up after symptom onset. We show that most patients had an improvement in DLCO at each timepoint. Trial registration: Clinical trial registration number: NCT04519320.
Endothelial function and microvesicle concentration changes after acute bouts of continuous eccentric exercise have not been assessed previously nor compared with concentric exercise at similar aerobic power outputs. This method of training may be useful among some clinical populations, but acute responses are not well described. As such, 12 healthy males completed 2 experimental sessions of either 45 min of eccentric or concentric cycling at a matched aerobic power output below the ventilatory threshold. Brachial artery vascular function was assessed throughout 5 min of forearm ischemia and 3 min thereafter, before and at 5 and 40 min of recovery following each exercise session [flow-mediated dilation (FMD)]. Venous blood samples were acquired before each vascular function assessment. FMD significantly decreased after eccentric cycling by 40 min of recovery ( < 0.05), but was unaltered after concentric exercise. No differences in peak hyperemic blood flow velocity occurred neither between modalities nor at any time point ( > 0.05). Platelet-derived microvesicles increased by ~20% after both exercise modalities ( < 0.05) while endothelial-derived microvesicles were unchanged ( > 0.05). Moderate relationships with cardiac output, a surrogate for shear stress, and norepinephrine were apparent ( < 0.05), but there were no relationships with inflammatory or acute phase proteins. In summary, eccentric endurance exercise induced macrovascular endothelial dysfunction; however, endothelial activation determined by endothelial microvesicles did not occur suggesting that this modality may induce oxidative stress but no significant endothelial damage. In addition, the increase in platelet microvesicle concentrations may induce beneficial microvascular adaptations as suggested by previous research. Continuous eccentric cycling exercise induces substantial skeletal muscle, tendon, and bone strain providing a potentially beneficial stimulus among clinical populations. This modality also induces temporary endothelial dysfunction but no apparent damage or activation of the endothelium indicated by microvesicle production, whereas proangiogenic platelet microvesicles are released similarly following both concentric and eccentric cycling and may relate to the shear stress and catecholamine response to exercise.
Offering large muscle benefits despite low metabolic demand, continuous eccentric exercise appears to be an interesting alternative to concentric exercise. Nevertheless, further knowledge is needed about prolonged eccentric exercise. This work sought to investigate the cardiovascular responses to prolonged constant-load eccentric compared to concentric cycling. Ten healthy males performed two 45-min exercise sessions of either concentric or eccentric cycling separated by a month and matched for heart rate during the first 5 min of exercise. Cardiorespiratory, autonomic nervous system and vascular responses were assessed at rest, and during exercise and recovery. During cycling, oxygen uptake, cardiac output and systolic blood pressure were similar but heart rate and diastolic blood pressure were greater whereas stroke volume was lower during eccentric than concentric cycling (118±21 vs. 104±10 bpm; 77±9 vs. 65±8 mmHg; 122±12 vs. 135±13 mL). Baroreflex and noradrenaline concentration were altered during eccentric cycling, and after eccentric exercise, vascular tone was greater than after concentric cycling. We observed increased cardiovascular strain and altered baroreflex activity during eccentric compared with concentric exercise, suggesting eccentric cycling triggers greater sympathetic activity.
Background Cardiopulmonary exercise testing (CPET) is an important clinical tool that provides a global assessment of the respiratory, circulatory and metabolic responses to exercise which are not adequately reflected through the measurement of individual organ system function at rest. In the context of critical COVID-19, CPET is an ideal approach for assessing long term sequelae. Methods In this prospective single-center study, we performed CPET 12 months after symptom onset in 60 patients that had required intensive care unit treatment for a severe COVID-19 infection. Lung function at rest and chest computed tomography (CT) scan were also performed. Results Twelve months after severe COVID-19 pneumonia, dyspnea was the most frequently reported symptom although only a minority of patients had impaired respiratory function at rest. Mild ground-glass opacities, reticulations and bronchiectasis were the most common CT scan abnormalities. The majority of the patients (80%) had a peak O2 uptake (V′O2) considered within normal limits (median peak predicted O2 uptake (V′O2) of 98% [87.2–106.3]). Length of ICU stay remained an independent predictor of V′O2. More than half of the patients with a normal peak predicted V′O2 showed ventilatory inefficiency during exercise with an abnormal increase of physiological dead space ventilation (VD/Vt) (median VD/VT of 0.27 [0.21–0.32] at anaerobic threshold (AT) and 0.29 [0.25–0.34] at peak) and a widened median peak alveolar-arterial gradient for O2 (35.2 mmHg [31.2–44.8]. Peak PetCO2 was significantly lower in subjects with an abnormal increase of VD/Vt (p = 0.001). Impairments were more pronounced in patients with dyspnea. Peak VD/Vt values were positively correlated with peak D-Dimer plasma concentrations from blood samples collected during ICU stay (r2 = 0.12; p = 0.02) and to predicted diffusion capacity of the lung for carbon monoxide (DLCO) (r2 = − 0.15; p = 0.01). Conclusions Twelve months after severe COVID-19 pneumonia, most of the patients had a peak V′O2 considered within normal limits but showed ventilatory inefficiency during exercise with increased dead space ventilation that was more pronounced in patients with persistent dyspnea. Trial registration: NCT04519320 (19/08/2020).
Muscle deoxygenation responses provide information about the training impulse of an exercise session enabling adaptation to be predicted. Our aim was to investigate muscle oxygenation profiles during prolonged low-intensity eccentric and concentric cycling. Twelve healthy men performed two 45-min exercise sessions of concentric (CON) and eccentric (ECC) cycling, matched for the same heart rate at the start of each session. Mechanical power output during ECC was ~2.5 times that of CON (210±40 W vs. 82±16 W). Oxygen uptake, blood lactate, cardiac output and systolic arterial pressure responses did not differ between exercises. Heart rate was similar at 5 min of each exercise bout but progressively increased during ECC and was higher at 15, 30 and 45 min of ECC compared to CON (+10 bpm), with a trend for a lower stroke volume. Diastolic and mean blood pressures were higher during ECC. No significant differences were observed in muscle oxygenation profiles. Muscle oxygenation responses during prolonged low-intensity exercise were not affected by the type of muscle action at the same metabolic demand and cardiac output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.