Exponential random graph models have attracted significant research attention over the past decades. These models are maximum-entropy ensembles subject to the constraints that the expected values of a set of graph observables are equal to given values. Here we extend these maximum-entropy ensembles to random simplicial complexes, which are more adequate and versatile constructions to model complex systems in many applications. We show that many random simplicial complex models considered in the literature can be casted as maximum-entropy ensembles under certain constraints. We introduce and analyze the most general random simplicial complex ensemble ∆ with statistically independent simplices. Our analysis is simplified by the observation that any distribution P(O) on any collection of objects O = {O}, including graphs and simplicial complexes, is maximum-entropy subject to the constraint that the expected value of − ln P(O) is equal to the entropy of the distribution. With the help of this observation, we prove that ensemble ∆ is maximum-entropy subject to the two types of constraints which fix the expected numbers of simplices and their boundaries.
We construct infinite families of graphs in which pretty good state transfer can be induced by adding a potential to the nodes of the graph (i.e. adding a number to a diagonal entry of the adjacency matrix). Indeed, we show that given any graph with a pair of cospectral nodes, a simple modification of the graph, along with a suitable potential, yields pretty good state transfer (i.e. asymptotically perfect state transfer) between the nodes. This generalizes previous work, concerning graphs with an involution, to asymmetric graphs.where X i , Y i , Z i are the standard Pauli matrices, J ij denotes the strength of the XX coupling between node i and j, and the Q i 's give the strength of the magnetic field yielding an energy potential at each node.
We extend the theory of hyperbolicity of links in the 3-sphere to tg-hyperbolicity of virtual links, using the fact that the theory of virtual links can be translated into the theory of links living in closed orientable thickened surfaces. When the boundary surfaces are taken to be totally geodesic, we obtain a tg-hyperbolic structure with a unique associated volume. We prove that all virtual alternating links are tg-hyperbolic. We further extend tg-hyperbolicity to several classes of non-alternating virtual links. We then consider bounds on volumes of virtual links and include a table for volumes of the 116 nontrivial virtual knots of four or fewer crossings, all of which, with the exception of the trefoil knot, turn out to be tg-hyperbolic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.