Cell division, cell motility and the formation and maintenance of specialized structures in differentiated cells depend directly on the regulated dynamics of the actin cytoskeleton. To understand the mechanisms of these basic cellular processes, the signalling pathways that link external signals to the regulation of the actin cytoskeleton need to be characterized. Here we identify a pathway for the regulation of cofilin, a ubiquitous actin-binding protein that is essential for effective depolymerization of actin filaments. LIM-kinase 1, also known as KIZ, is a protein kinase with two amino-terminal LIM motifs that induces stabilization of F-actin structures in transfected cells. Dominant-negative LIM-kinasel inhibits the accumulation of the F-actin. Phosphorylation experiments in vivo and in vitro provide evidence that cofilin is a physiological substrate of LIM-kinase 1. Phosphorylation by LIM-kinase 1 inactivates cofilin, leading to accumulation of actin filaments. Constitutively active Rac augmented cofilin phosphorylation and LIM-kinase 1 autophosphorylation whereas phorbol ester inhibited these processes. Our results define a mechanism for the regulation of cofilin and hence of actin dynamics in vivo. By modulating the stability of actin cytoskeletal structures, this pathway should play a central role in regulating cell motility and morphogenesis.
Sympathetic neurons require nerve growth factor for survival and die by apoptosis in its absence. Key steps in the death pathway include c-Jun activation, mitochondrial cytochrome c release, and caspase activation. Here, we show that neurons rescued from NGF withdrawal-induced apoptosis by expression of dominant-negative c-Jun do not release cytochrome c from their mitochondria. Furthermore, we find that the mRNA for BIM(EL), a proapoptotic BCL-2 family member, increases in level after NGF withdrawal and that this is reduced by dominant-negative c-Jun. Finally, overexpression of BIM(EL) in neurons induces cytochrome c redistribution and apoptosis in the presence of NGF, and neurons injected with Bim antisense oligonucleotides or isolated from Bim(-/-) knockout mice die more slowly after NGF withdrawal.
Slingshot (SSH) phosphatases and LIM kinases (LIMK)regulate actin dynamics via a reversible phosphorylation (inactivation) of serine 3 in actin-depolymerizing factor (ADF) and cofilin. Here we demonstrate that a multi-protein complex consisting of SSH-1L, LIMK1, actin, and the scaffolding protein, 14-3-3f, is involved, along with the kinase, PAK4, in the regulation of ADF/cofilin activity. Endogenous LIMK1 and SSH-1L interact in vitro and co-localize in vivo, and this interaction results in dephosphorylation and downregulation of LIMK1 activity. We also show that the phosphatase activity of purified SSH-1L is F-actin dependent and is negatively regulated via phosphorylation by PAK4. 14-3-3f binds to phosphorylated slingshot, decreases the amount of slingshot that co-sediments with F-actin, but does not alter slingshot activity. Here we define a novel ADF/cofilin phosphoregulatory complex and suggest a new mechanism for the regulation of ADF/cofilin activity in mediating changes to the actin cytoskeleton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.