Development of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.
Background: COVID-19 can present with lymphopenia and extraordinary complex multiorgan pathologies that can trigger long-term sequela.Aims: Given that inflammasome products, like caspase-1, play a role in the pathophysiology of a number of co-morbid conditions, we investigated caspases across the spectrum of COVID-19 disease.
Materials & Methods:We assessed transcriptional states of multiple caspases and using flow cytometry, the expression of active caspase-1 in blood cells from COVID-19 patients in acute and convalescent stages of disease. Non-COVID-19 subject presenting with various comorbid conditions served as controls.Results: Single-cell RNA-seq data of immune cells from COVID-19 patients showed a distinct caspase expression pattern in T cells, neutrophils, dendritic cells, and eosinophils compared with controls. Caspase-1 was upregulated in CD4+ T-cells from hospitalized COVID-19 patients compared with unexposed controls. Post-COVID-19 patients with lingering symptoms (long-haulers) also showed upregulated caspase-1activity in CD4+ T-cells that ex vivo was attenuated with a select pan-caspase inhibitor. We observed elevated caspase-3/7levels in red blood cells from COVID-19 patients compared with controls that was reduced following caspase inhibition. Discussion: Our preliminary results suggest an exuberant caspase response in COVID-19 that may facilitate immune-related pathological processes leading to severe outcomes. Further clinical correlations of caspase expression in different stages of COVID-19 will be needed.
Conclusion:Pan-caspase inhibition could emerge as a therapeutic strategy to ameliorate or prevent severe COVID-19.
supplementary data for Table S1, reviewed data of all previous cases. CMB made a critical revision of the manuscript, helped in the acquisition of data, provided supplementary data for Table S1, reviewed data of all previous cases. All authors revised and gave the approval of the final manuscript.
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a significant global health emergency with new variants in some cases evading current therapies and approved vaccines. COVID-19 presents with a broad spectrum of acute and long-term manifestations. Severe COVID-19 is characterized by dysregulated cytokine release profile, dysfunctional immune responses, and hypercoagulation with a high risk of progression to multi-organ failure and death. Unraveling the fundamental immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and design of more effective therapeutic interventions for individuals at the highest risk of severe outcomes. Caspases are expressed in both immune and non-immune cells and mediate inflammation and cell death, including apoptosis and pyroptosis. Here we review accumulating evidence defining the importance of the expression and activity of caspase family members following SARS-CoV-2 infection and disease. Research suggests SARS-CoV-2 infection is linked to the function of multiple caspases, both mechanistically in vitro as well as in observational studies of individuals with severe COVID-19, which may further the impact on disease severity. We also highlight immunological mechanisms that occur in severe COVID-19 pathology upstream and downstream of activated caspase pathways, including innate recognition receptor signaling, inflammasomes, and other multiprotein complex assembly, inflammatory mediators IL-1β and IL-18, and apoptotic and pyroptotic cell death. Finally, we illuminate discriminate and indiscriminate caspase inhibitors that have been identified for clinical use that could emerge as potential therapeutic interventions that may benefit clinical efforts to prevent or ameliorate severe COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.