A number of image processing techniques (IPTs) have been implemented for detecting civil infrastructure defects to partially replace human-conducted onsite inspections. These IPTs are primarily used to manipulate images to extract defect features, such as cracks in concrete and steel surfaces. However, the extensively varying real-world situations (e.g., lighting and shadow changes) can lead to challenges to the wide adoption of IPTs. To overcome these challenges, this article proposes a vision-based method using a deep architecture of convolutional neural networks (CNNs) for detecting concrete cracks without calculating the defect features. As CNNs are capable of learning image features automatically, the proposed method works without the conjugation of IPTs for extracting features. The designed CNN is trained on 40 K images of 256 × 256 pixel resolutions and, consequently, records with about 98% accuracy. The trained CNN is combined with a sliding window technique to scan any image size larger than 256 × 256 pixel resolutions. The robustness and adaptability of the proposed approach are tested on 55 images of 5,888 × 3,584 pixel resolutions taken from a different structure which is not used for training and validation processes under various conditions (e.g., strong light spot, shadows, and very thin cracks). Comparative studies are conducted to examine the performance of the proposed CNN using traditional Canny and Sobel edge detection methods. The results show that the proposed method shows
Computer vision‐based techniques were developed to overcome the limitations of visual inspection by trained human resources and to detect structural damage in images remotely, but most methods detect only specific types of damage, such as concrete or steel cracks. To provide quasi real‐time simultaneous detection of multiple types of damages, a Faster Region‐based Convolutional Neural Network (Faster R‐CNN)‐based structural visual inspection method is proposed. To realize this, a database including 2,366 images (with 500 × 375 pixels) labeled for five types of damages—concrete crack, steel corrosion with two levels (medium and high), bolt corrosion, and steel delamination—is developed. Then, the architecture of the Faster R‐CNN is modified, trained, validated, and tested using this database. Results show 90.6%, 83.4%, 82.1%, 98.1%, and 84.7% average precision (AP) ratings for the five damage types, respectively, with a mean AP of 87.8%. The robustness of the trained Faster R‐CNN is evaluated and demonstrated using 11 new 6,000 × 4,000‐pixel images taken of different structures. Its performance is also compared to that of the traditional CNN‐based method. Considering that the proposed method provides a remarkably fast test speed (0.03 seconds per image with 500 × 375 resolution), a framework for quasi real‐time damage detection on video using the trained networks is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.