Recently, ecological and economic issues have affected fish meal (FM) supply, the main source of protein for shrimp. This triggered a search for alternative dietary protein sources for shrimp production. We studied the consequences of replacing FM with a defatted insect meal, ŸnMealTM (YM), comprised of yellow mealworm (Tenebrio molitor). Growth and immune parameters of juvenile Pacific white shrimp (Litopenaeus vannanmei) were compared after an eight-week feeding trial. Shrimp were kept in aquaria with densities of 60 and 40 shrimp/m2 and fed one of five diets in which a proportion of FM was replaced by YM. All diets were isoproteic, isoenergetic, and balanced in lysine and methionine. After the feeding trial, shrimp were challenged with pathogenic bacteria (Vibrio parahaemolyticus). Growth and feed conversion parameters improved when YM was included in shrimp diets; with the highest weight gain and best food conversion ratio (FCR) achieved when 50% of FM was replaced by YM versus the control diet that contained no YM (initial weight: 1.60 g/shrimp; growth: 5.27 vs. 3.94 g/shrimp; FCR 1.20 vs. 1.59). In challenged shrimp, mortality rates were significantly less among groups that received YM, with a 76.9% lower mortality rate in the 50% FM replacement group versus the control.
The optimal concentration of a panel of individual and combined carotenoid sources on skin pigmentation in fancy carp was investigated by nine experimental diets that were formulated and supplemented with astaxanthin at 25 mg kg−1, lutein at 25 and 50 mg kg−1, β‐carotene at 25, 50 and 75 mg kg−1, and lutein combined with β‐carotene at 25 : 25 and 50 : 50 mg kg−1, while a diet without supplemented carotenoid served as a control. The results showed that serum TC of fish fed diets containing supplemented with lutein plus β‐carotene at 25 : 25; 50 : 50 mg kg−1 and lutein 50 mg kg−1 diet were higher than the other treatments (P ≤ 0.05). Serum TC of the respective treatments was 6.2 ± 2.0, 7.8 ± 3.3 and 7.3 ± 1.9 μg mL−1 serum, respectively. Fish fed diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg−1 and lutein 50 mg kg−1 diet had serum astaxanthin concentrations similar to fish fed the diet with astaxanthin alone at 25 mg kg−1. Serum astaxanthin concentrations was 0.7 ± 0.01, 0.9 ± 0.01, 0.4 ± 0.02 and 1.7 ± 0.18 μg mL−1 serum, respectively. The chromaticity of fish body skin of red and white position was assessed by colourimetry using the CIE L*a*b (CIELAB) system. Pigmentation response of skin redness of fancy carp fed with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg−1 and lutein 50 mg kg−1 were higher than other treatments (P ≤ 0.05) but they were similar to fish fed with 25 mg kg−1 astaxanthin diet. The redness (a* values) of fish fed diets with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg−1 and lutein 50 mg kg−1 were 28.3 ± 0.53, 29.9 ± 1.38, 28.8 ± 3.95 and 28.5 ± 2.49, respectively. After 3 weeks of feeding the experimental diets, the fish fed on a diet without carotenoid supplement for one week demonstrated that the same three groups still retained their redness and had an overall tendency to improve skin colouring. Finally, concentrations 50 mg kg−1 of lutein, or the combination of lutein and β‐carotene at 25 : 25 mg kg−1 showed the highest efficiency for improving skin pigmentation and redness of skin.
Abstract:The stability of formulated carotenoid diets during feed processing and under different storage conditions were studied. All carotenoid diets were split into two groups with one group containing BHT (acting as an antioxidant) at 250 ppm and the other without BHT. The experiment was divided into two parts. First, all diets were evaluated in total carotenoid (TC) loss during feed processing, in dry mixed feeds after being processed and dried. In the final part, the completed dietary carotenoids were stored in an aluminum foil bag, the top of which was sealed with a bag sealer and kept under different storage conditions at 26-28 °C and 4 °C. The stability of the TC was observed during an 8-week trial period. The results showed that the diet pelleting process did not affect the carotenoid content of the diets, and the best storage temperature for the formulated carotenoid diet was at 4 °C. However, an antioxidant was added to assist in energy saving before feed processing. Thus, the addition of BHT at 250 ppm can be done at normal room temperature in order to reduce oxidation that might cause a loss of TC quantities in diets.
Thailand was second only to P.R.China in annual production of giant river prawn. This article briefly describes the seed production of giant river prawn technology in Thailand and notes that broodstock management has paid scant attention to genetic issues. There are, however, ongoing selective breeding programmes on giant river prawn aimed to improve growth and disease resistance. In the conventional culture technology, postlarvae are stocked at a high density and prawns are harvested partially. The cropping period is long and the practice has led to disease outbreaks and deteriorated pond bottoms that result in frequent detection of antibiotic residue. The improved culture technology involves manual sexing of the prawns at 3 months and restocking only the male prawns into new ponds at low density. The technique gives higher yield and reduces incidence of disease and thus the need for prophylactics. The constraints to giant river prawn culture business in Thailand include low yield and a limited export market. The article describes three ways to expand and sustain the business of giant river prawn farming in the country: development of more genetically improved strains; culture of all-male stock, and new culture techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.