Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.
Twenty-eight isolates of tospoviruses associated with tomato, pepper, cucurbits, peanut, and Physalis plants collected from fields in different regions of Thailand were characterized. On the basis of N gene and protein sequence relationships, three tospoviruses were identified, namely Watermelon silver mottle virus (WSMoV), Capsicum chlorosis virus (CaCV), and Melon yellow spot virus (MYSV). CLUSTAL analysis of selected N protein sequences showed different isolates of CaCV in three distinct clades. Based on necrosis symptoms on tomato and their 93% identity to CaCV isolates in the other two clades, CaCV-TD8, CaCV-AIT and CaCV-KS16-Thailand tomato tospovirus were designated as CaCV-tomato necrosis strain. A phylogenetic tree based on the 413-amino-acid Gc fragment of the CaCV-Pkk isolate supported the existence of three distinct CaCV clades. Vigna unguiculata produced concentric rings useful for discriminating the Thai CaCV peanut isolates from tomato or pepper isolates. By using reverse transcription polymerase chain reaction with species-specific primers, the three tospoviruses could be detected in mixed infections in watermelon and Physalis, as well as in the bodies of thrips vectors, Thrips palmi and Scirtothrips dorsalis, collected from fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.