Extracted compounds from Caesalpinia sappan L. were examined for the inhibitory activity against NO, PGE2 , and TNF-α productions and on associated transcription levels using RAW264.7 cells. They were also tested for their effects on wound healing using fibroblast L929 cells. Among the compounds tested, brazilin (8) was the most effective against lipopolysaccharide (LPS)-induced NO production in RAW264.7 cells with an IC50 value of 10.3 μM, followed by sappanchalcone (2, 31.0 μM). Brazilin (8) also inhibited PGE2 and TNF-α production with IC50 values of 12.6 and 87.2 μM, respectively. The antiinflammatory mechanism of brazilin involved down regulation of the mRNA expressions of the iNOS, COX-2, and TNF-α genes in a dose-dependent manner. An ethanol (EtOH) extract of C. sappan significantly increased fibroblast proliferation, fibroblast migration, and collagen production, whereas brazilin (8) only stimulated fibroblast migration. In addition, the EtOH extract showed no acute toxicity in mice, and it was therefore safe to make use of its potent antiinflammatory and wound healing activities. Brazilin was mainly responsible for its antiinflammatory effect through its ability to inhibit the production of NO, PGE2 , and TNF-α. This study supports the traditional use of C. sappan for treatment of inflammatory-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.