The influences of morphology and thickness of zinc oxide (ZnO) buffer layers on the performance of inverted polymer solar cells are investigated. ZnO buffer layers with different morphology and thickness varying from several nanometers to ≈55 nm are fabricated by adjusting the concentration of the precursor sol. The ZnO buffer layers with nearly same surface quality but with thickness varying from ≈7 to ≈65 nm are also fabricated by spinning coating for comparison. The photovoltaic performance is found to be strongly dependent on ZnO surface quality and less dependent on the thickness. The use of dense and homogenous ZnO buffer layers enhances the fill factor and short‐circuit current of inverted solar cell without sacrificing the open‐circuit voltage of device due to an improvement in the contact between the ZnO buffer layer and the photoactive layer. Inverted devices with a dense and homogenous ZnO buffer layer derived from 0.1 M sol exhibit an overall conversion efficiency of 3.3% which is a 32% increase compared to devices with a rough ZnO buffer layer made from 1 M sol, which exhibited a power conversion efficiency of 2.5%. The results indicate that the efficiency of inverted polymer solar cells can be significantly influenced by the morphology of the buffer layer.
The role of wide band gap oxide thin layer in inverted structure polymer solar cells was investigated by employing oxide films of TiO<sub>2</sub> and Nb<sub>2</sub>O<sub>5</sub>approximately 10 nm in thickness deposited onto FTO substrates. The experimental results demonstrated that the thin oxide layer serving to separate the electron collecting electrode and the photoactive film of a blend of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) was necessary to promote the formation of continuous uniform PCBM film to block holes in P3HT from being recombined with electrons in collecting electrode. A use of TiO<sub>2</sub> buffer layer leads to power conversion efficiency as high as 2.8%. As for Nb<sub>2</sub>O<sub>5</sub>, in spite the fact that its conduction band is higher than the LUMO level of PCBM polymer acting as electron transport material, a power conversion of 2.7%, which was only slightly different from the 2.8% achieved for the cell employing TiO<sub>2</sub>. These experimental results suggest a tunneling mechanism for the electrons to transport from the PCBM to collecting electrode over the oxide film, instead of a diffusion through the oxide film arising from either energy or concentration difference of the photogenerated electrons
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.