Angiotensin-converting enzyme (ACE) is a zinc metalloproteinase involved in the renin-angiotensin system (RAS). It is well known that ACE and ACE2 are central regulators of blood pressure. Moreover, recently, it was observed that the ACE2 protein is the main target of the SARS-CoV-2 virus, so we have tried to reveal if there is a distinction in the levels of the ACE2 protein in distinct cell types (sensitive to virus infection), during cell differentiation and aging. We observed that depletion of the ACE2 protein appears in aorta-associated parts during the aging of adult mice, and the level of ACE2 was lowest in kidneys of old female animals in comparison to male mice. Differentiation into enterocytes and more pronouncedly into cardiomyocytes was accompanied by depletion of the ACE2 protein. The deficiency of histone deacetylase 1 (HDAC1) also caused a decrease in the level of both ACE2 and its interacting partner renin. However, experimental cardiomyogenesis was associated with renin up-regulation. In human lung adenocarcinoma cells, vitamin D2, but not chloroquine, slightly increased the level of ACE2. Together, the higher level of the ACE2 protein appears in non-differentiated cells and tissue of young mice, in comparisons to terminally differentiated cells and old animals; thus, a higher level of the ACE2 protein, also seen after vitamin D2 treatment, seems to be a barrier against SARS-CoV-2, because it is known that tissues of young individuals are less sensitive to viral infection.
Cell differentiation into cardiomyocytes requires activation of differentiation-specific genes and epigenetic factors that contribute to these physiological processes. This study is focused on the in vitro differentiation of mouse embryonic stem cells (mESCs) induced into cardiomyocytes. The effects of clinically promising inhibitors of histone deacetylases (HDACi) on mESC cardiomyogenesis and on explanted embryonic hearts were also analyzed. HDAC1 depletion caused early beating of cardiomyocytes compared with those of the wild-type (wt) counterpart. Moreover, the adherence of embryonic bodies (EBs) was reduced in HDAC1 double knockout (dn) mESCs. The most important finding was differentiation-specific H4 deacetylation observed during cardiomyocyte differentiation of wt mESCs, while H4 deacetylation was weakened in HDAC1-depleted cells induced to the cardiac pathway. Analysis of the effect of HDACi showed that Trichostatin A (TSA) is a strong hyperacetylating agent, especially in wt mESCs, but only SAHA reduced the size of the beating areas in EBs that originated from HDAC1 dn mESCs. Additionally, explanted embryonic hearts (e15) responded to treatment with HDACi: all of the tested HDACi (TSA, SAHA, VPA) increased the levels of H3K9ac, H4ac, H4K20ac, and pan-acetylated lysines in embryonic hearts. This observation shows that explanted tissue can be maintained in a hyperacetylation state several hours after excision, which appears to be useful information from the view of transplantation strategy and the maintenance of gene upregulation via acetylation in tissue intended for transplantation.
It has become evident that epitranscriptome events, mediated by specific enzymes, regulate gene expression and, subsequently, cell differentiation processes. We show that methyltransferase-like proteins METTL3/METTL14 and N6-adenosine methylation (m6A) in RNAs are homogeneously distributed in embryonic hearts, and histone deacetylase (HDAC) inhibitors valproic acid and Trichostatin A (TSA) up-regulate METTL3/METTL14 proteins. The levels of METTL3 in mouse adult hearts, isolated from male and female animals, were lower in the aorta and pulmonary trunks when compared with atria, but METT14 was up-regulated in the aorta and pulmonary trunk, in comparison with ventriculi. Aging caused METTL3 down-regulation in aorta and atria in male animals. Western blot analysis in differentiated mouse embryonic stem cells (mESCs), containing 10–30 percent of cardiomyocytes, showed METTL3/METTL14 down-regulation, while the differentiation-induced increased level of METTL16 was observed in both wild type (wt) and HDAC1 depleted (dn) cells. In parallel, experimental differentiation in especially HDAC1 wild type cells was accompanied by depletion of m6A in RNA. Immunofluorescence analysis of individual cells revealed the highest density of METTL3/METTL14 in α-actinin positive cardiomyocytes when compared with the other cells in the culture undergoing differentiation. In both wt and HDAC1 dn cells, the amount of METTL16 was also up-regulated in cardiomyocytes when compared to co-cultivated cells. Together, we showed that distinct anatomical regions of the mouse adult hearts are characterized by different levels of METTL3 and METTL14 proteins, which are changed during aging. Experimental cell differentiation was also accompanied by changes in METTL-like proteins and m6A in RNA; in particular, levels and distribution patterns of METTL3/METTL14 proteins were different from the same parameters studied in the case of the METTL16 protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.