Elucidating population structure and levels of genetic diversity and recombination is necessary to understand the evolution and adaptation of species. Candida albicans is the second most frequent agent of human fungal infections worldwide, causing high-mortality rates. Here we present the genomic sequences of 182 C. albicans isolates collected worldwide, including commensal isolates, as well as ones responsible for superficial and invasive infections, constituting the largest dataset to date for this major fungal pathogen. Although, C. albicans shows a predominantly clonal population structure, we find evidence of gene flow between previously known and newly identified genetic clusters, supporting the occurrence of (para)sexuality in nature. A highly clonal lineage, which experimentally shows reduced fitness, has undergone pseudogenization in genes required for virulence and morphogenesis, which may explain its niche restriction. Candida albicans thus takes advantage of both clonality and gene flow to diversify.
Cryptococcosis is a major fungal disease caused by members of the Cryptococcus gattii and Cryptococcus neoformans species complexes. After more than 15 years of molecular genetic and phenotypic studies and much debate, a proposal for a taxonomic revision was made.
Candida africana is a recently described opportunistic yeast pathogen that has been linked to vaginal candidiasis. This yeast was first described, in 1995, as atypical chlamydospore-negative Candida albicans strain, and subsequently proposed as a new Candida species on the basis of morphological, biochemical and physiological characteristics clearly different from those of typical C. albicans isolates. Phylogenetic studies based on the comparison of ribosomal DNA sequences demonstrated that C. africana and C. albicans isolates are too closely related to draw any conclusions regarding the status of a new species. Therefore, on the basis of these studies, some authors considered C. africana as a biovar of C. albicans even if genetic differences may be found if additional regions of genomic DNA are sequenced. The taxonomic situation of C. africana and its phylogenetic relationship with other Candida species is still controversial and remains, at present, a matter of debate. Our goal is to review the current knowledge about C. africana and highlight the development of rapid and accurate tests for its discrimination from C. albicans, Candida dubliniensis and Candida stellatoidea. Furthermore, through the analysis of literature data, we have found that C. africana has a worldwide distribution and a considerable number of features making its study particularly interesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.