As we move toward the exascale era, performance variability in HPC systems remains a challenge. I/O interference, a major cause of this variability, is becoming more important every day with the growing number of concurrent applications that share larger machines. Earlier research efforts on mitigating I/O interference focus on a single potential cause of interference (e.g., the network). Yet the root causes of I/O interference can be diverse. In this work, we conduct an extensive experimental campaign to explore the various root causes of I/O interference in HPC storage systems. We use microbenchmarks on the Grid'5000 testbed to evaluate how the applications' access pattern, the network components, the file system's configuration, and the backend storage devices influence I/O interference. Our studies reveal that in many situations interference is a result of bad flow control in the I/O path, rather than being caused by some single bottleneck in one of its components. We further show that interferencefree behavior is not necessarily a sign of optimal performance. To the best of our knowledge, our work provides the first deep insight into the role of each of the potential root causes of interference and their interplay. Our findings can help developers and platform owners improve I/O performance and motivate further research addressing the problem across all components of the I/O stack.
Today's scientific applications are increasingly relying on a variety of data sources, storage facilities, and computing infrastructures, and there is a growing demand for data analysis and visualization for these applications. In this context, exploiting Big Data frameworks for scientific computing is an opportunity to incorporate high-level libraries, platforms, and algorithms for machine learning, graph processing, and streaming; inherit their data awareness and fault-tolerance; and increase productivity. Nevertheless, limitations exist when Big Data platforms are integrated with an HPC environment, namely poor scalability, severe memory overhead, and huge development effort. This paper focuses on a popular Big Data framework -Apache Spark-and proposes an architecture to support the integration of highly scalable MPI block-based data models and communication patterns with a map-reducebased programming model. The resulting platform preserves the data abstraction and programming interface of Spark, without conducting any changes in the framework, but allows the user to delegate operations to the MPI layer. The evaluation of our prototype shows that our approach integrates Spark and MPI efficiently at scale, so end users can take advantage of the productivity facilitated by the rich ecosystem of high-level Big Data tools and libraries based on Spark, without compromising efficiency and scalability.
Hadoop emerged as the de facto state-of-the-art system for MapReduce-based data analytics. The reliability of Hadoop systems depends in part on how well they handle failures. Currently, Hadoop handles machine failures by re-executing all the tasks of the failed machines (i.e., executing recovery tasks). Unfortunately, this elegant solution is entirely entrusted to the core of Hadoop and hidden from Hadoop schedulers. The unawareness of failures therefore may prevent Hadoop schedulers from operating correctly towards meeting their objectives (e.g., fairness, job priority) and can significantly impact the performance of MapReduce applications. This paper presents Chronos, a failure-aware scheduling strategy that enables an early yet smart action for fast failure recovery while still operating within a specific scheduler objective. Upon failure detection, rather than waiting an uncertain amount of time to get resources for recovery tasks, Chronos leverages a lightweight preemption technique to carefully allocate these resources. In addition, Chronos considers data locality when scheduling recovery tasks to further improve the performance. We demonstrate the utility of Chronos by combining it with Fifo and Fair schedulers. The experimental results show that Chronos recovers to a correct scheduling behavior within a couple of seconds only and reduces the job completion times by up to 55% compared to state-of-the-art schedulers.
Hadoop emerged as the de facto state-of-the-art system for MapReduce-based data analytics. The reliability of Hadoop systems depends in part on how well they handle failures. Currently, Hadoop handles machine failures by re-executing all the tasks of the failed machines (i.e., executing recovery tasks). Unfortunately, this elegant solution is entirely entrusted to the core of Hadoop and hidden from Hadoop schedulers. The unawareness of failures therefore may prevent Hadoop schedulers from operating correctly towards meeting their objectives (e.g., fairness, job priority) and can significantly impact the performance of MapReduce applications. This paper presents Chronos, a failure-aware scheduling strategy that enables an early yet smart action for fast failure recovery while still operating within a specific scheduler objective. Upon failure detection, rather than waiting an uncertain amount of time to get resources for recovery tasks, Chronos leverages a lightweight preemption technique to carefully allocate these resources. In addition, Chronos considers data locality when scheduling recovery tasks to further improve the performance. We demonstrate the utility of Chronos by combining it with Fifo and Fair schedulers. The experimental results show that Chronos recovers to a correct scheduling behavior within a couple of seconds only and reduces the job completion times by up to 55% compared to state-of-the-art schedulers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.