“Candidatus Liberibacter solanacearum” (Lso) has emerged as a serious threat world-wide. Five Lso haplotypes have been identified so far. Haplotypes A and B are present in the Americas and/or New Zealand, where they are vectored to solanaceous plants by the potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae). The fastidious nature of these pathogens has hindered the study of the interactions with their eukaryotic hosts (vector and plant). To understand the strategies used by these pathogens to infect their vector, the effects of each Lso haplotype (A or B) on psyllid fitness was investigated, and genome-wide transcriptomic and RT-qPCR analyses were performed to evaluate Lso gene expression in association with its vector. Results showed that psyllids infected with haplotype B had significantly lower percentage of nymphal survival compared to psyllids infected with haplotype A. Although overall gene expression across Lso genome was similar between the two Lso haplotypes, differences in the expression of key candidate genes were found. Among the 16 putative type IV effector genes tested, four of them were differentially expressed between Lso haplotypes, while no differences in gene expression were measured by qPCR or transcriptomic analysis for the rest of the genes. This study provides new information regarding the pathogenesis of Lso haplotypes in their insect vector.
The recent emergence of several plant diseases caused by psyllid-borne bacterial pathogens worldwide (Candidatus Liberibacter spp.) has created renewed interest on the interaction between psyllids and bacteria. In spite of these efforts to understand psyllid association with bacteria, many aspects of their interactions remain poorly understood. As more organisms are studied, subtleties on the molecular interactions as well as on the effects of the bacteria on the psyllid host are being uncovered. Additionally, psyllid-borne bacterial phytopathogens can also affect the host plant, which in turn can impact psyllid physiology and behavior. Here, we review the current literature on different aspects of the influence of bacteria on multitrophic interactions among plants, psyllids, and pathogens. We then highlight gaps that need to be addressed to advance this field, which can have significant implications for controlling these newly emergent and other plant diseases.
The corn planthopper, Peregrinus maidis, is a pest of maize and a vector of several maize viruses. Previously published methods describe the triggering of RNA interference (RNAi) in P. maidis through microinjection of double-stranded RNAs (dsRNAs) into nymphs and adults. Despite the power of RNAi, phenotypes generated via this technique are transient and lack long-term Mendelian inheritance. Therefore, the P. maidis toolbox needs to be expanded to include functional genomic tools that would enable the production of stable mutant strains, opening the door for researchers to bring new control methods to bear on this economically important pest. However, unlike the dsRNAs used for RNAi, the components used in CRISPR/Cas9-based genome editing and germline transformation do not easily cross cell membranes. As a result, plasmid DNAs, RNAs, and/or proteins must be microinjected into embryos before the embryo cellularizes, making the timing of injection a critical factor for success. To that end, an agarose-based egg-lay method was developed to allow embryos to be harvested from P. maidis females at relatively short intervals. Herein are provided detailed protocols for collecting and microinjecting precellular P. maidis embryos with CRISPR components (Cas9 nuclease that has been complexed with guide RNAs), and results of Cas9-based gene knockout of a P. maidis eye-color gene, white, are presented. Although these protocols describe CRISPR/Cas9-genome editing in P. maidis, they can also be used for producing transgenic P. maidis via germline transformation by simply changing the composition of the injection solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.