The internal state of an organism influences its perception of attractive or aversive stimuli and thus promotes adaptive behaviors that increase its likelihood of survival. The mechanisms underlying these perceptual shifts are critical to our understanding of how neural circuits support animal cognition and behavior. Starved flies exhibit enhanced sensitivity to attractive odors and reduced sensitivity to aversive odors. Here, we show that a functional remodeling of the olfactory map is mediated by two parallel neuromodulatory systems that act in opposing directions on olfactory attraction and aversion at the level of the first synapse. Short neuropeptide F sensitizes an antennal lobe glomerulus wired for attraction, while tachykinin (DTK) suppresses activity of a glomerulus wired for aversion. Thus we show parallel neuromodulatory systems functionally reconfigure early olfactory processing to optimize detection of nutrients at the risk of ignoring potentially toxic food resources.DOI:
http://dx.doi.org/10.7554/eLife.08298.001
OBJECTIVEDiffusion tensor imaging (DTI) is an MRI tool that provides an objective, noninvasive, in vivo assessment of spinal cord injury (SCI). DTI is significantly better at visualizing microstructures than standard MRI sequences. In this imaging modality, the direction and amplitude of the diffusion of water molecules inside tissues is measured, and this diffusion can be measured using a variety of parameters. As a result, the potential clinical application of DTI has been studied in several spinal cord pathologies, including SCI. The aim of this study was to describe the current state of the potential clinical utility of DTI in patients with SCI and the challenges to its use as a tool in clinical practice.METHODSA search in the PubMed database was conducted for articles relating to the use of DTI in SCI. The citations of relevant articles were also searched for additional articles.RESULTSAmong the most common DTI metrics are fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. Changes in these metrics reflect changes in tissue integrity. Several DTI metrics and combinations thereof have demonstrated significant correlations with clinical function both in model species and in humans. Its applications encompass the full spectrum of the clinical assessment of SCI including diagnosis, prognosis, recovery, and efficacy of treatments in both the spinal cord and potentially the brain.CONCLUSIONSDTI and its metrics have great potential to become a powerful clinical tool in SCI. However, the current limitations of DTI preclude its use beyond research and into clinical practice. Further studies are needed to significantly improve and resolve these limitations as well as to determine reliable time-specific changes in multiple DTI metrics for this tool to be used accurately and reliably in the clinical setting.
For many animals, hunger promotes changes in the olfactory system in a manner that facilitates the search for appropriate food sources. In this video article, we describe an automated assay to measure the effect of hunger or satiety on olfactory dependent food search behavior in the adult fruit fly Drosophila melanogaster. In a light-tight box illuminated by red light that is invisible to fruit flies, a camera linked to custom data acquisition software monitors the position of six flies simultaneously. Each fly is confined to walk in individual arenas containing a food odor at the center. The testing arenas rest on a porous floor that functions to prevent odor accumulation. Latency to locate the odor source, a metric that reflects olfactory sensitivity under different physiological states, is determined by software analysis. Here, we discuss the critical mechanics of running this behavioral paradigm and cover specific issues regarding fly loading, odor contamination, assay temperature, data quality, and statistical analysis.
Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.