Mutations in human LMNA cause Emery-Dreifuss muscular dystrophy; however, a mechanistic link between the effect of mutations on lamin filament assembly and disease phenotype has not been established. Here we show that changes in lamin filament structure translate into disease phenotypes in Caenorhabditis elegans by altering the character of the nuclear lamina.
Dipolar lipid membranes may adsorb multivalent ions. The binding constant depends on the type of lipid and ions. In this paper, we focus on the adsorption of calcium ions onto 1,2-dilauroylphosphatidylcholine (DLPC) membrane. Using small-angle-X-ray scattering we found that at ambient room temperature ca. 0.6 mM CaCl2 is a critical concentration at which calcium ions adsorbed to 30 mg/mL (ca. 48 mM) DLPC membrane. We then determined the structure of the lamellar phases formed at CaCl2 concentrations below and above the critical concentration and characterized the effect of temperature and incubation time on the adsorption process. Our findings suggest that calcium adsorption to DLPC membranes requires an initial nucleation phase.
We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.
Aluminum
plasmonics is emerging as a promising platform in particular
for the ultraviolet-blue spectral band. We present the experimental
results of propagating channel plasmon-polaritons (CPP) waves in aluminum
coated V-shaped waveguides at the short visible wavelength regime.
The V-grooves are fabricated by a process involving UV-photolithography,
crystallographic silicon etching, and metal deposition. Polarization
measurements of coupling demonstrate a preference to the TM-aligned
mode, as predicted in simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.