It has long been recognized that insults to the cerebral cortex, such as trauma, ischaemia or infections, may result in the development of epilepsy, one of the most common neurological disorders. Human and animal studies have suggested that perturbations in neurovascular integrity and breakdown of the blood-brain barrier (BBB) lead to neuronal hypersynchronization and epileptiform activity, but the mechanisms underlying these processes are not known. In this study, we reveal a novel mechanism for epileptogenesis in the injured brain. We used focal neocortical, long-lasting BBB disruption or direct exposure to serum albumin in rats (51 and 13 animals, respectively, and 26 controls) as well as albumin exposure in brain slices in vitro. Most treated slices (72%, n = 189) displayed hypersynchronous propagating epileptiform field potentials when examined 5-49 days after treatment, but only 14% (n = 71) of control slices showed similar responses. We demonstrate that direct brain exposure to serum albumin is associated with albumin uptake into astrocytes, which is mediated by transforming growth factor beta receptors (TGF-betaRs). This uptake is followed by down regulation of inward-rectifying potassium (Kir 4.1) channels in astrocytes, resulting in reduced buffering of extracellular potassium. This, in turn, leads to activity-dependent increased accumulation of extracellular potassium, resulting in facilitated N-methyl-d-aspartate-receptor-mediated neuronal hyperexcitability and eventually epileptiform activity. Blocking TGF-betaR in vivo reduces the likelihood of epileptogenesis in albumin-exposed brains to 29.3% (n = 41 slices, P < 0.05). We propose that the above-described cascade of events following common brain insults leads to brain dysfunction and eventually epilepsy and suggest TGF-betaRs as a possible therapeutic target.
Perturbations in the integrity of the blood-brain barrier have been reported in both humans and animals under numerous pathological conditions. Although the blood-brain barrier prevents the penetration of many blood constituents into the brain extracellular space, the effect of such perturbations on the brain function and their roles in the pathogenesis of cortical diseases are unknown.In this study we established a model for focal disruption of the blood-brain barrier in the rat cortex by direct application of bile salts. Exposure of the cerebral cortex in vivo to bile salts resulted in long-lasting extravasation of serum albumin to the brain extracellular space and was associated with a prominent activation of astrocytes with no inflammatory response or marked cell loss. Using electrophysiological recordings in brain slices we found that a focus of epileptiform discharges developed within 4 -7 d after treatment and could be recorded up to 49 d postoperatively in Ͼ60% of slices from treated animals but only rarely (10%) in sham-operated controls. Epileptiform activity involved both glutamatergic and GABAergic neurotransmission. Epileptiform activity was also induced by direct cortical application of native serum, denatured serum, or albumin-containing solution. In contrast, perfusion with serum-adapted electrolyte solution did not induce abnormal activity, thereby suggesting that the exposure of the serum-devoid brain environment to serum proteins underlies epileptogenesis in the blood-brain barrier-disrupted cortex. Although many neuropathologies entail a compromised bloodbrain barrier, this is the first direct evidence that it may have a role in the pathogenesis of focal cortical epilepsy, a common neurological disease.
BACKGROUND: Traumatic brain injury (TBI) is an important cause of focal epilepsy. Animal experiments indicate that disruption of the blood-brain barrier (BBB) plays a critical role in the pathogenesis of post-traumatic epilepsy (PTE). OBJECTIVE: To investigate the frequency, extent and functional correlates of increased BBB permeability in patient with PTE. METHODS: 32 head trauma patients were included in the study, with 17 suffering from PTE. Patients underwent brain MRI (bMRI) and were evaluated for BBB disruption, using a novel semi-quantitative technique. Cortical dysfunction was measured using electroencephalography (EEG), and localised using standardised low-resolution brain electromagnetic tomography (sLORETA). RESULTS: Spectral EEG analyses revealed significant slowing in patients with TBI, with no significant differences between patients with epilepsy and those without. Although bMRI revealed that patients with PTE were more likely to present with intracortical lesions (p = 0.02), no differences in the size of the lesion were found between the groups (p = 0.19). Increased BBB permeability was found in 76.9% of patients with PTE compared with 33.3% of patients without epilepsy (p = 0.047), and could be observed years following the trauma. Cerebral cortex volume with BBB disruption was larger in patients with PTE (p = 0.001). In 70% of patients, slow (delta band) activity was co-localised, by sLORETA, with regions showing BBB disruption. CONCLUSIONS: Lasting BBB pathology is common in patients with mild TBI, with increased frequency and extent being observed in patients with PTE. A correlation between disrupted BBB and abnormal neuronal activity is suggested. The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in JNNP and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence (http://jnnp.bmj.com/ifora/licence.pdf). Animal experiments indicate that disruption of the blood-brain barrier (BBB) plays a critical role in the pathogenesis of post-traumatic epilepsy (PTE). Objective: To investigate the frequency, extent and functional correlates of increased BBB permeability in PTE patients. Methods: 32 head trauma patients were included in the study, with 17 suffering from PTE. Patients underwent brain magnetic resonance imaging (bMRI) and were evaluated for BBB disruption, using a novel semi-quantitative technique. Cortical dysfunction was measured using electroencephalography (EEG), and localized using standardized low resolution brain electromagnetic tomography (sLORETA). Results: Spectral EEG analyses revealed significant slowing in TBI patients with no significant differences between epileptic and non-epileptic patients. While bMRI revealed that PTE patients were more likely to present with intracortical lesions (p=0.02)...
Recent animal experiments indicate a critical role for opening of the blood-brain barrier (BBB) in the pathogenesis of post-traumatic epilepsy (PTE). This study aimed to investigate the frequency, extent, and functional correlates of BBB disruption in epileptic patients following mild traumatic brain injury (TBI). Thirty-seven TBI patients were included in this study, 19 of whom suffered from PTE. All underwent electroencephalographic (EEG) recordings and brain magnetic resonance imaging (bMRI). bMRIs were evaluated for BBB disruption using novel quantitative techniques. Cortical dysfunction was localized using standardized low-resolution brain electromagnetic tomography (sLORETA). TBI patients displayed significant EEG slowing compared to controls with no significant differences between PTE and nonepileptic patients. BBB disruption was found in 82.4% of PTE compared to 25% of non-epileptic patients (P = .001) and could be observed even years following the trauma. The volume of cerebral cortex with BBB disruption was significantly larger in PTE patients (P = .001). Slow wave EEG activity was localized to the same region of BBB disruption in 70% of patients and correlated to the volume of BBB disrupted cortex. We finally present a patient suffering from early cortical dysfunction and BBB breakdown with a gradual and parallel resolution of both pathologies. Our findings demonstrate that BBB pathology is frequently found following mild TBI. Lasting BBB breakdown is found with increased frequency and extent in PTE patients. Based on recent animal studies and the colocalization found between the region of disrupted BBB and abnormal EEG activity, we suggest a role for a vascular lesion in the pathogenesis of PTE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.