The gut microbiome has been shown to influence the response of tumors to anti–PD-1 (programmed cell death–1) immunotherapy in preclinical mouse models and observational patient cohorts. However, modulation of gut microbiota in cancer patients has not been investigated in clinical trials. In this study, we performed a phase 1 clinical trial to assess the safety and feasibility of fecal microbiota transplantation (FMT) and reinduction of anti–PD-1 immunotherapy in 10 patients with anti–PD-1–refractory metastatic melanoma. We observed clinical responses in three patients, including two partial responses and one complete response. Notably, treatment with FMT was associated with favorable changes in immune cell infiltrates and gene expression profiles in both the gut lamina propria and the tumor microenvironment. These early findings have implications for modulating the gut microbiota in cancer treatment.
Studies on lipid-peptide interactions of cytolytic polypeptides tend to emphasize the importance of the amphipathic alpha-helical structure for their cytolytic activity. In this study, diasetereomers of the bee venom melittin (26 a.a.), a non-cell-selective cytolysin, were synthesized and investigated for their structure and cytolytic activity toward bacteria and mammalian cells. Similarly to the findings with the diastereomers of the less cytolytic peptide pardaxin (33 a.a.) (Shai & Oren. 1996), the melittin diastereomer, lest their alpha-helical structure, which abrogated their hemolytic activity toward human erythrocytes. However, they retained their antibacterial activity and completely lysed both Gram-positive and Gram-negative bacteria, as revealed by transmission electron microscopy. To understand the molecular mechanism underlying this selectivity, binding experiments utilizing the intrinsic tryptophan of melittin, tryptophan quenching experiments using brominated phospholipids, and membrane destabilization studies were done. The data revealed that the melittin diastereomers bound to and destabilized only negatively-charged phospholipid vesicles, in contrast to native melittin, which binds strongly to both negatively-charged and zwitterionic phospholipids. However, the partition coefficient, the depth of penetration into the membrane, and the membrane-permeating activity of the diastereomers with negatively-charged phospholipids were similar to those obtained with melittin. The results obtained do not support the formation of transmembrane pores as the mode of action of the diastereomers, but rather suggest that these peptides bind to the surface of the bacterial membrane, cover it in a "carpet-like" manner, and dissolve it like a detergent. The results presented here together with those obtained with the cytolytic peptide pardaxin suggest that the combination of hydrophobicity and net positive charge may be sufficient in the design of potent diastereomers of antibacterial polypeptides for the treatment of infectious diseases.
The antimicrobial peptide LL-37 belongs to the cathelicidin family and is the first amphipathic alpha-helical peptide isolated from human. LL-37 is considered to play an important role in the first line of defence against local infection and systemic invasion of pathogens at sites of inflammation and wounds. Understanding its mode of action may assist in the development of antimicrobial agents mimicking those of the human immune system. In vitro studies revealed that LL-37 is cytotoxic to both bacterial and normal eukaryotic cells. To gain insight into the mechanism of its non-cell-selective cytotoxicity, we synthesized and structurally and functionally characterized LL-37, its N-terminal truncated form FF-33, and their fluorescent derivatives (which retained structure and activity). The results showed several differences, between LL-37 and other native antimicrobial peptides, that may shed light on its in vivo activities. Most interestingly, LL-37 exists in equilibrium between monomers and oligomers in solution at very low concentrations. Also, it is significantly resistant to proteolytic degradation in solution, and when bound to both zwitterionic (mimicking mammalian membranes) and negatively charged membranes (mimicking bacterial membranes). The results also showed a role for the N-terminus in proteolytic resistance and haemolytic activity, but not in antimicrobial activity. The LL-37 mode of action with negatively charged membranes suggests a detergent-like effect via a 'carpet-like' mechanism. However, the ability of LL-37 to oligomerize in zwitterionic membranes might suggest the formation of a transmembrane pore in normal eukaryotic cells. To examine this possibility we used polarized attenuated total reflectance Fourier-transform infrared spectroscopy and found that the peptide is predominantly alpha-helical and oriented nearly parallel with the surface of zwitterionic-lipid membranes. This result does not support the channel-forming hypothesis, but rather it supports the detergent-like effect.
The increasing resistance of bacteria to conventional antibiotics resulted in a strong effort to develop antimicrobial compounds with new mechanisms of action. Antimicrobial peptides seem to be a promising solution to this problem. Many studies aimed at understanding their mode of action were described in the past few years. The most studied group includes the linear, mostly alpha-helical peptides. Although the exact mechanism by which they kill bacteria is not clearly understood, it has been shown that peptide-lipid interactions leading to membrane permeation play a role in their activity. Membrane permeation by amphipathic alpha-helical peptides can proceed via either one of the two mechanisms: (a) transmembrane pore formation via a "barrel-stave" mechanism; and (b) membrane destruction/solubilization via a "carpet-like" mechanism. The purpose of this review is to summarize recent studies aimed at understanding the mode of action of linear alpha-helical antimicrobial peptides. This review, which is focused on magainins, cecropins, and dermaseptins as representatives of the amphipathic alpha-helical antimicrobial peptides, supports the carpet-like rather the barrel-stave mechanism. That these peptides vary with regard to their length, amino acid composition, and next positive charge, but act via a common mechanism, may imply that other linear antimicrobial peptides that share the same properties also share the same mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.