Manipulation of liquids at the lowest levels of volume and dimension is at the forefront of materials science, chemistry and medicine, offering important time and resource saving applications. However, manipulation by mixing is troublesome at the microliter and lower scales. One approach to overcome this problem is to use passive mixers, which exploit structural obstacles within microfluidic channels or the geometry of channels themselves to enforce and enhance fluid mixing. Some applications require the manipulation and mixing of aggressive substances, which makes conventional microfluidic materials, along with their fabrication methods, inappropriate. In this work, implementation of an optimized full scale three port microfluidic mixer is presented in a slide of a material that is very hard to process but possesses extreme chemical and physical resistance—alumina. The viability of the selected femtosecond laser fabrication method as an alternative to conventional lithography methods, which are unable to process this material, is demonstrated. For the validation and optimization of the microfluidic mixer, a finite element method (FEM) based numerical modeling of the influence of the mixer geometry on its mixing performance is completed. Experimental investigation of the laminar flow geometry demonstrated very good agreement with the numerical simulation results. Such a laser ablation microfabricated passive mixer structure is intended for use in a capillary force assisted nanoparticle assembly setup (CAPA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.