Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
The completely renormalized equation-of-motion coupled-cluster approach with singles, doubles, and noniterative triples [CR-EOMCCSD(T)] has proven to be a reliable tool in describing vertical excitation energies in small and medium size molecules. In order to reduce the high numerical cost of the genuine CR-EOMCCSD(T) method and make noniterative CR-EOMCCSD(T) approaches applicable to large molecular systems, two active-space variants of this formalism [the CR-EOMCCSd(t)-II and CR-EOMCCSd(t)-III methods], based on two different choices of the subspace of triply excited configurations employed to construct noniterative correction, are introduced. In calculations for green fluorescent protein (GFP) and free-base porphyrin, where the CR-EOMCCSD(T) results are available, we show good agreement between the active-space CR-EOMCCSD(T) (variant II) and full CR-EOMCCSD(T) excitation energies. For the oligoporphyrin dimer (P(2)TA) active-space CR-EOMCCSD(T) results provide reasonable agreement with experimentally inferred data. For all systems considered we demonstrated that the active-space CR-EOMCCSD(T) corrections lower the EOMCCSD (iterative equation-of-motion coupled-cluster method with singles and doubles) excitation energies by 0.2 and 0.3 eV, which leads to a better agreement with experiment. We also discuss the quality of basis sets used and compare EOMCC excitation energies with excitation energies obtained with other methods. In particular, we demonstrate that for GFP and FBP Sadlej's TZP and cc-pVTZ basis sets lead to a similar quality of the EOMCC results. The performance of the CR-EOMCCSD(T) implementation is discussed from the point of view of timings of iterative parts and scalability of the most expensive, N(7), part of the calculation. In the latter case the scalability across 34 008 processors is reported.
The details of the graphical processing unit (GPU) implementation of the most computationally intensive (T)-part of the recently introduced regularized CCSD(T) (Reg-CCSD(T)) method [ Kowalski , K. ; Valiev , M. J. Chem. Phys. 2009 , 131 , 234107 ] for calculating electronic energies of strongly correlated systems are discussed. Parallel tests performed for several molecular systems show very good scalability of the triples part of the Reg-CCSD(T) approach. We also discuss the performance of the Reg-CCSD(T) GPU implementation as a function of the parameters defining the partitioning of the spinorbital domain (tiling structure). The accuracy of the Reg-CCSD(T) method is illustrated on three examples: the methyfluoride molecule, dissociation of dodecane, and open-shell Spiro cation (5,5'(4H,4H')-spirobi[cyclopenta[c]pyrrole] 2,2',6,6'-tetrahydro cation), which is a frequently used model to study electron transfer processes. It is demonstrated that a simple regularization of the cluster amplitudes used in the noniterative corrections accounting for the effect of triply excited configurations significantly improves the accuracies of ground-state energies in the presence of strong quasidegeneracy effects. For methylfluoride, we compare the Reg-CCSD(T) results with the CR-CC(2,3) and CCSDT energies, whereas for Spiro cation we compare Reg-CCSD(T) results with the energies obtained with completely renormalized CCSD(T) method. Performance tests for the Spiro, dodecane, and uracil molecules are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.