Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens’ behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system’s high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity.
Fog computing is considered as the most promising enhancement of the traditional cloud computing paradigm in order to handle potential issues introduced by the emerging Interned of Things (IoT) framework at the network edge. The heterogeneous nature, the extensive distribution and the hefty number of deployed IoT nodes will disrupt existing functional models, creating confusion. However, IoT will facilitate the rise of new applications, with automated healthcare monitoring platforms being amongst them. This paper presents the pillars of design for such applications, along with the evaluation of a working prototype that collects ECG traces from a tailormade device and utilizes the patient's smartphone as a Fog gateway for securely sharing them to other authorized entities. This prototype will allow patients to share information to their physicians, monitor their health status independently and notify the authorities rapidly in emergency situations. Historical data will also be available for further analysis, towards identifying patterns that may improve medical diagnoses in the foreseeable future.
Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge. CCS CONCEPTS • Human-centered computing → Mobile devices; • Computing methodologies → Machine learning;
The world of machine-to-machine (M2M) communication is gradually moving from vertical single purpose solutions to multipurpose and collaborative applications interacting across industry verticals, organizations and people-a world of Internet of Things (IoT). The dominant approach for delivering IoT applications relies on the development of cloud-based IoT platforms that collect all the data generated by the sensing elements and centrally process the information to create real business value. In this paper, we present a system that follows the Fog Computing paradigm where the sensor resources, as well as the intermediate layers between embedded devices and cloud computing datacenters, participate by providing computational, storage, and control. We discuss the design aspects of our system and present a pilot deployment for the evaluating the performance in a real-world environment. Our findings indicate that Fog Computing can address the ever-increasing amount of data that is inherent in an IoT world by effective communication among all elements of the architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.