In this article, we show that the standard vector-valued generalization of a generalized grey Brownian motion (ggBm) has independent components if and only if it is a fractional Brownian motion. In order to extend ggBm with independent components, we introduce a vector-valued generalized grey Brownian motion (vggBm). The characteristic function of the corresponding measure is introduced as the product of the characteristic functions of the one-dimensional case. We show that for this measure, the Appell system and a calculus of generalized functions or distributions are accessible. We characterize these distributions with suitable transformations and give a d d -dimensional Donsker’s delta function as an example for such distributions. From there, we show the existence of local times and self-intersection local times of vggBm as distributions under some constraints, and compute their corresponding generalized expectations. At the end, we solve a system of linear SDEs driven by a vggBm noise in d d dimensions.
In this article, we show that the standard vector-valued generalization of a generalized grey Brownian motion (ggBm) has independent components if and only if it is a fractional Brownian motion. In order to extend ggBm with independent components, we introduce a vector-valued generalized grey Brownian motion (vggBm). The characteristic function of the corresponding measure is introduced as the product of the characteristic functions of the one-dimensional case. We show that for this measure, the Appell system and a calculus of generalized functions or distributions are accessible. We characterize these distributions with suitable transformations and give a d-dimensional Donsker's delta function as an example for such distributions. From there, we show the existence of local times and self-intersection local times of vggBm as distributions under some constraints, and compute their corresponding generalized expectations. At the end, we solve a system of linear SDEs driven by a vggBm noise in d dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.