In this article will do a' concept generalization n-gon. By renouncing the metrics in much axiomatic geometry, the need arises for a new label to this concept. In this paper will use the meaning of n-vertexes. As you know in affine and projective plane simply set of points, blocks and incidence relation, which is argued in [1], [2], [3]. In this paper will focus on affine plane. Will describe the meaning of the similarity n-vertexes. Will determine the addition of similar three-vertexes in Desargues affine plane, which is argued in [1], [2], [3], and show that this set of three-vertexes forms an commutative group associated with additions of three-vertexes. At the end of this paperare making a generalization of the meeting of similarity nvertexes in Desargues affine plane, also here it turns out to have a commutative group, associated with additions of similarity n-vertexes.
In this article, starting from geometrical considerations, he was born with the idea of 3D matrices, which have developed in this article. A problem here was the definition of multiplication, which we have given in analogy with the usual 2D matrices. The goal here is 3D matrices to be a generalization of 2D matrices. Work initially we started with 3 3 3 × × matrix, and then we extended to m n p × × matrices. In this article, we give the meaning of 3D matrices.We also defined two actions in this set. As a result, in this article, we have reached to present 3-dimensional unitary ring matrices with elements from a field F.
In this paper, based on several meanings and statements discussed in the literature, we intend constuction a affine plane about a of whatsoever corps (K,+,*). His points conceive as ordered pairs (α,β), where α and β are elements of corps (K,+,*). Whereas straight-line in corps, the conceptualize by equations of the type x*a+y*b=c, where a≠0K or b≠0K thevariables and coefficients are elements of that corps. To achieve this construction we prove some theorems which show that the incidence structure A=(P, L, I) connected to the corps K satisfies axioms A1, A2, A3 definition of affine plane. In all proofs rely on the sense of thecorps as his ring and properties derived from that definition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.